Suppr超能文献

基于 CT 的放射组学列线图预测结直肠癌术后预后:一项两中心研究。

A CT-Based Radiomics Nomogram in Predicting the Postoperative Prognosis of Colorectal Cancer: A Two-center Study.

机构信息

Nantong University, Nantong, Jiangsu, PR China.

GE Healthcare China, Shanghai, PR China.

出版信息

Acad Radiol. 2022 Nov;29(11):1647-1660. doi: 10.1016/j.acra.2022.02.006. Epub 2022 Mar 25.

Abstract

RATIONALE AND OBJECTIVES

This retrospective study aimed to develop a practical model to determine overall survival after surgery in patients with colorectal cancer according to radiomics signatures based on computed tomography (CT) images and clinical predictors.

MATERIALS AND METHODS

A total of 121 colorectal cancer (CRC) patients were selected to construct the model, and 51 patients and 114 patients were selected for internal validation and external testing. The radiomics features were extracted from each patient's CT images. Univariable Cox regression and least absolute shrinkage and selection operator regression were used to select radiomics features. The performance of the nomogram was evaluated by calibration curves and the c-index. Kaplan-Meier analysis was used to compare the overall survival between these subgroups.

RESULTS

The radiomics features of the CRC patients were significantly correlated with survival time. The c-indexes of the nomogram in the training cohort, internal validation cohort and external test cohort were 0.782, 0.721, and 0.677. Our nomogram integrated the optimal radiomics signature with clinical predictors showed a significant improvement in the prediction of CRC patients' overall survival. The calibration curves showed that the predicted survival time was close to the actual survival time. According to Kaplan-Meier analysis, the 1-, 2-, and 3-year survival rates of the low-risk group were higher than those of the high-risk group.

CONCLUSION

The nomogram combining the optimal radiomics signature and clinical predictors further improved the predicted accuracy of survival prognosis for CRC patients. These findings might affect treatment strategies and enable a step forward for precise medicine.

摘要

背景与目的

本回顾性研究旨在根据基于 CT 图像和临床预测因子的放射组学特征,为结直肠癌患者建立一种实用的术后总生存期模型。

材料与方法

共选择了 121 名结直肠癌(CRC)患者来构建模型,51 名和 114 名患者被选择用于内部验证和外部测试。从每位患者的 CT 图像中提取放射组学特征。单变量 Cox 回归和最小绝对值收缩和选择算子回归用于选择放射组学特征。通过校准曲线和 C 指数评估列线图的性能。 Kaplan-Meier 分析用于比较这些亚组的总生存期。

结果

CRC 患者的放射组学特征与生存时间显著相关。列线图在训练队列、内部验证队列和外部测试队列中的 C 指数分别为 0.782、0.721 和 0.677。我们的列线图将最佳放射组学特征与临床预测因子相结合,对 CRC 患者的总体生存预测有显著改善。校准曲线显示,预测的生存时间与实际生存时间接近。根据 Kaplan-Meier 分析,低危组的 1 年、2 年和 3 年生存率均高于高危组。

结论

结合最佳放射组学特征和临床预测因子的列线图进一步提高了结直肠癌患者生存预后预测的准确性。这些发现可能会影响治疗策略,并为精准医学迈出一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验