Nandhini Rajendran, Berslin Don, Sivaprakash Baskaran, Rajamohan Natarajan, Vo Dai-Viet N
Department of Chemical Engineering, Annamalai University, Annamalai Nagar, Chidambaram, 608002 India.
Chemical Engineering Section, Faculty of Engineering, Sohar University, 311 Sohar, Oman.
Environ Chem Lett. 2022;20(3):1645-1669. doi: 10.1007/s10311-022-01410-3. Epub 2022 Mar 24.
The rising global population is inducing a fast increase in the amount of municipal waste and, in turn, issues of rising cost and environmental pollution. Therefore, alternative treatments such as waste-to-energy should be developed in the context of the circular economy. Here, we review the conversion of municipal solid waste into energy using thermochemical methods such as gasification, combustion, pyrolysis and torrefaction. Energy yield depends on operating conditions and feedstock composition. For instance, torrefaction of municipal waste at 200 °C generates a heating value of 33.01 MJ/kg, while the co-pyrolysis of cereals and peanut waste yields a heating value of 31.44 MJ/kg at 540 °C. Gasification at 800 °C shows higher carbon conversion for plastics, of 94.48%, than for waste wood and grass pellets, of 70-75%. Integrating two or more thermochemical treatments is actually gaining high momentum due to higher energy yield. We also review reforming catalysts to enhance dihydrogen production, such as nickel on support materials such as CaTiO, SrTiO, BaTiO, AlO, TiO, MgO, ZrO. Techno-economic analysis, sensitivity analysis and life cycle assessment are discussed.
全球人口的增长正在促使城市垃圾量迅速增加,进而引发成本上升和环境污染问题。因此,应在循环经济背景下开发诸如垃圾转化能源等替代处理方法。在此,我们综述了利用气化、燃烧、热解和烘焙等热化学方法将城市固体废物转化为能源的情况。能源产量取决于操作条件和原料组成。例如,城市垃圾在200°C下进行烘焙可产生33.01兆焦/千克的热值,而谷物与花生壳废料在540°C下进行共热解可产生31.44兆焦/千克的热值。在800°C下进行气化时,塑料的碳转化率为94.48%,高于废木材和草颗粒的70%-75%。由于能提高能源产量,将两种或更多种热化学处理方法相结合正成为一种发展趋势。我们还综述了用于提高氢气产量的重整催化剂,比如负载在CaTiO、SrTiO、BaTiO、AlO、TiO、MgO、ZrO等载体材料上的镍催化剂。文中还讨论了技术经济分析、敏感性分析和生命周期评估。