Suppr超能文献

一种用于个性化计算机化认知训练干预的机器学习方法。

A Machine Learning Approach to Personalize Computerized Cognitive Training Interventions.

作者信息

Vladisauskas Melina, Belloli Laouen M L, Fernández Slezak Diego, Goldin Andrea P

机构信息

Laboratorio de Neurociencia, Universidad Torcuato di Tella, Buenos Aires, Argentina.

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ministry of Science, Technology and Innovation, Buenos Aires, Argentina.

出版信息

Front Artif Intell. 2022 Mar 8;5:788605. doi: 10.3389/frai.2022.788605. eCollection 2022.

Abstract

Executive functions are a class of cognitive processes critical for purposeful goal-directed behavior. Cognitive training is the adequate stimulation of executive functions and has been extensively studied and applied for more than 20 years. However, there is still a lack of solid consensus in the scientific community about its potential to elicit consistent improvements in untrained domains. Individual differences are considered one of the most important factors of inconsistent reports on cognitive training benefits, as differences in cognitive functioning are both genetic and context-dependent, and might be affected by age and socioeconomic status. We here present a proof of concept based on the hypothesis that baseline individual differences among subjects would provide valuable information to predict the individual effectiveness of a cognitive training intervention. With a dataset from an investigation in which 73 6-year-olds trained their executive functions using an online software with a fixed protocol, freely available at www.matemarote.org.ar, we trained a support vector classifier that successfully predicted (average accuracy = 0.67, AUC = 0.707) whether a child would improve, or not, after the cognitive stimulation, using baseline individual differences as features. We also performed a permutation feature importance analysis that suggested that all features contribute equally to the model's performance. In the long term, this results might allow us to design better training strategies for those players who are less likely to benefit from the current training protocols in order to maximize the stimulation for each child.

摘要

执行功能是一类对有目的的目标导向行为至关重要的认知过程。认知训练是对执行功能的适当刺激,并且已经被广泛研究和应用了20多年。然而,科学界对于其在未经训练的领域引发持续改善的潜力仍缺乏确凿的共识。个体差异被认为是关于认知训练益处的报告不一致的最重要因素之一,因为认知功能的差异既受遗传影响又依赖于环境,并且可能受到年龄和社会经济地位的影响。我们在此基于这样一个假设提出一个概念验证,即受试者之间的基线个体差异将为预测认知训练干预的个体有效性提供有价值的信息。利用来自一项调查的数据集,在该调查中,73名6岁儿童使用一个固定方案的在线软件训练他们的执行功能,该软件可在www.matemarote.org.ar免费获取,我们训练了一个支持向量分类器,该分类器使用基线个体差异作为特征,成功预测了(平均准确率 = 0.67,AUC = 0.707)一个孩子在认知刺激后是否会有所改善。我们还进行了排列特征重要性分析,结果表明所有特征对模型性能的贡献相同。从长远来看,这一结果可能使我们能够为那些不太可能从当前训练方案中受益的参与者设计更好的训练策略,以便为每个孩子最大化刺激效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79a6/8958026/b7debc74becb/frai-05-788605-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验