Suppr超能文献

计算机模拟分析 SARS-CoV-2 蛋白作为临床可用药物的靶点。

In silico analysis of SARS-CoV-2 proteins as targets for clinically available drugs.

机构信息

Department of Pharmacology, University of Michigan, 2301 MSRBIII, 1150 W Medical Center Dr, Ann Arbor, MI, 48190-5606, USA.

Edward F Domino Research Center, University of Michigan, Ann Arbor, MI, 48190, USA.

出版信息

Sci Rep. 2022 Mar 29;12(1):5320. doi: 10.1038/s41598-022-08320-y.

Abstract

The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires treatments with rapid clinical translatability. Here we develop a multi-target and multi-ligand virtual screening method to identify FDA-approved drugs with potential activity against SARS-CoV-2 at traditional and understudied viral targets. 1,268 FDA-approved small molecule drugs were docked to 47 putative binding sites across 23 SARS-CoV-2 proteins. We compared drugs between binding sites and filtered out compounds that had no reported activity in an in vitro screen against SARS-CoV-2 infection of human liver (Huh-7) cells. This identified 17 "high-confidence", and 97 "medium-confidence" drug-site pairs. The "high-confidence" group was subjected to molecular dynamics simulations to yield six compounds with stable binding poses at their optimal target proteins. Three drugs-amprenavir, levomefolic acid, and calcipotriol-were predicted to bind to 3 different sites on the spike protein, domperidone to the Mac1 domain of the non-structural protein (Nsp) 3, avanafil to Nsp15, and nintedanib to the nucleocapsid protein involved in packaging the viral RNA. Our "two-way" virtual docking screen also provides a framework to prioritize drugs for testing in future emergencies requiring rapidly available clinical drugs and/or treating diseases where a moderate number of targets are known.

摘要

由严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 引起的持续大流行需要具有快速临床转化能力的治疗方法。在这里,我们开发了一种多靶点和多配体虚拟筛选方法,以识别具有针对 SARS-CoV-2 的传统和研究较少的病毒靶点的潜在活性的 FDA 批准药物。我们对接了 47 种 SARS-CoV-2 蛋白的 1,268 种 FDA 批准的小分子药物到 47 个假定的结合位点。我们比较了结合位点之间的药物,并筛选出了在针对 SARS-CoV-2 感染人肝 (Huh-7) 细胞的体外筛选中没有报道活性的化合物。这确定了 17 个“高可信度”和 97 个“中可信度”的药物-结合位点对。“高可信度”组进行了分子动力学模拟,以产生在其最佳靶蛋白上具有稳定结合构象的六种化合物。三种药物-安普那韦、左甲叶酸和卡泊三醇-被预测与刺突蛋白上的 3 个不同位点结合,多潘立酮与非结构蛋白 (Nsp) 3 的 Mac1 结构域结合,阿伐那非与 Nsp15 结合,尼替西农与参与包装病毒 RNA 的核衣壳蛋白结合。我们的“双向”虚拟对接筛选还为在未来需要快速获得临床药物的紧急情况和/或治疗已知数量适中的靶点的疾病中测试药物提供了框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/564c/8964757/2f1d6aa1ef51/41598_2022_8320_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验