Fu Hucheng, Zhang Aitang, Jin Fuhao, Guo Hanwen, Liu Jingquan
College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, People's Republic of China.
ACS Appl Mater Interfaces. 2022 Apr 13;14(14):16165-16177. doi: 10.1021/acsami.1c24512. Epub 2022 Mar 30.
Ternary layered double-hydroxide-based active compounds are regarded as ideal electrode materials for supercapacitors because of their unique structural characteristics and excellent electrochemical properties. Herein, an NiCeCo-layered double hydroxide with a core-shell structure grown on copper bromide nanowire arrays (CuBr@NCC-LDH/CF) has been synthesized through a hydrothermal strategy and calcination process and utilized to fabricate a binder-free electrode. Due to the unique top-tangled structure and the complex assembly of different active components, the prepared hierarchical CuBr@NCC-LDH/CF binder-free electrode exhibits an outstanding electrochemical performance, including a remarkable areal capacitance of 5460 mF cm at 2 mA cm and a capacitance retention of 88% at 50 mA cm as well as a low internal resistance of 0.163 Ω. Moreover, an all-solid-state asymmetric supercapacitor (ASC) installed with CuBr@NCC-LDH/CF and activated carbon electrodes shows a high energy density of 118 Wh kg at a power density of 1013 W kg. Three assembled ASCs connected in series can operate a multifunctional display for over three and a half hours. Therefore, this innovative work provides new inspiration for the preparation of electrode materials for supercapacitors.
基于三元层状双氢氧化物的活性化合物因其独特的结构特性和优异的电化学性能而被视为超级电容器的理想电极材料。在此,通过水热策略和煅烧过程合成了一种在溴化铜纳米线阵列(CuBr@NCC-LDH/CF)上生长的具有核壳结构的镍铈钴层状双氢氧化物,并用于制备无粘结剂电极。由于独特的顶部缠结结构和不同活性成分的复杂组装,制备的分级CuBr@NCC-LDH/CF无粘结剂电极表现出优异的电化学性能,包括在2 mA cm时具有5460 mF cm的显著面积电容、在50 mA cm时具有88%的电容保持率以及0.163 Ω的低内阻。此外,安装有CuBr@NCC-LDH/CF和活性炭电极的全固态不对称超级电容器(ASC)在1013 W kg的功率密度下显示出118 Wh kg的高能量密度。三个串联组装的ASC可以使多功能显示器运行超过三个半小时。因此,这项创新性工作为超级电容器电极材料的制备提供了新的灵感。