Suppr超能文献

仿生无脂多糖细菌外膜功能化纳米颗粒用于脑靶向药物传递。

Biomimetic Lipopolysaccharide-Free Bacterial Outer Membrane-Functionalized Nanoparticles for Brain-Targeted Drug Delivery.

机构信息

Jiangsu Key Laboratory of Neuropsychiatric Diseases Research, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.

National Engineering Research Centre of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, P. R. China.

出版信息

Adv Sci (Weinh). 2022 May;9(16):e2105854. doi: 10.1002/advs.202105854. Epub 2022 Mar 31.

Abstract

The blood-brain barrier (BBB) severely blocks the intracranial accumulation of most systemic drugs. Inspired by the contribution of the bacterial outer membrane to Escherichia coli K1 (EC-K1) binding to and invasion of BBB endothelial cells in bacterial meningitis, utilization of the BBB invasion ability of the EC-K1 outer membrane for brain-targeted drug delivery and construction of a biomimetic self-assembled nanoparticle with a surface featuring a lipopolysaccharide-free EC-K1 outer membrane are proposed. BBB penetration of biomimetic nanoparticles is demonstrated to occur through the transcellular vesicle transport pathway, which is at least partially dependent on internalization, endosomal escape, and transcytosis mediated by the interactions between outer membrane protein A and gp96 on BBB endothelial cells. This biomimetic nanoengineering strategy endows the loaded drugs with prolonged circulation, intracranial interstitial distribution, and extremely high biocompatibility. Based on the critical roles of gp96 in cancer biology, this strategy reveals enormous potential for delivering therapeutics to treat gp96-overexpressing intracranial malignancies.

摘要

血脑屏障(BBB)严重阻止了大多数全身药物在颅内的积累。受细菌外膜对大肠杆菌 K1(EC-K1)与细菌性脑膜炎中 BBB 内皮细胞结合和入侵的贡献的启发,利用 EC-K1 外膜对 BBB 的入侵能力进行脑靶向药物递送,并构建具有 LPS 缺失的 EC-K1 外膜表面的仿生自组装纳米颗粒。证明仿生纳米颗粒能够通过细胞间囊泡转运途径穿透 BBB,该途径至少部分依赖于外膜蛋白 A 和 BBB 内皮细胞上的 gp96 之间的相互作用介导的内化、内体逃逸和转胞吞作用。这种仿生纳米工程策略使负载的药物具有延长的循环、颅内间质分布和极高的生物相容性。基于 gp96 在癌症生物学中的关键作用,该策略为递送至治疗 gp96 过表达的颅内恶性肿瘤的治疗药物提供了巨大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbff/9165477/aac4932c58a2/ADVS-9-2105854-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验