Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany.
School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
Acc Chem Res. 2022 Apr 19;55(8):1135-1147. doi: 10.1021/acs.accounts.1c00799. Epub 2022 Mar 31.
The carbonyl group stands as a fundamental scaffold and plays a ubiquitous role in synthetically important chemical reactions in both academic and industrial contexts. Venerable transformations, including the aldol reaction, Grignard reaction, Wittig reaction, and Nozaki-Hiyama-Kishi reaction, constitute a vast and empowering synthetic arsenal. Notwithstanding, two-electron mechanisms inherently confine the breadth of accessible reactivity and topological patterns.Fostered by the rapid development of photoredox catalysis, combing well-entrenched carbonyl addition and radicals can harness several unique and increasingly sustainable transformations. In particular, unusual carbon-carbon and carbon-heteroatom disconnections, which are out of reach of two-electron carbonyl chemistry, can be conceived. To meet this end, a novel strategy toward the utilization of simple carbonyl compounds as intermolecular radical acceptors was developed. The reaction is enabled by visible-light photoredox-initiated hole catalysis. In situ Brønsted acid activation of the carbonyl moiety prevents β-scission from occurring. Furthermore, this regioselective alkyl radical addition reaction obviates the use of metals, ligands, or additives, thus offering a high degree of atom economy under mild conditions. On the basis of the same concept and the work of Schindler and co-workers, carbonyl-olefin cross-metathesis, induced by visible light, has also been achieved, leveraging a radical Prins-elimination sequence.Recently, dual chromium and photoredox catalysis has been developed by us and Kanai, offering a complementary approach to the revered Nozaki-Hiyama-Kishi reaction. Leveraging the intertwined synergy between light and metal, several radical-to-polar crossover transformations toward eminent molecular motifs have been developed. Reactions such as the redox-neutral allylation of aldehydes and radical carbonyl alkylation can harvest the power of light and enable the use of catalytic chromium metal. Overall, exquisite levels of diastereoselectivity can be enforced via highly compact transition states. Other examples, such as the dialkylation of 1,3-dienes and radical carbonyl propargylation portray the versatile combination of radicals and carbonyl addition in multicomponent coupling endeavors. Highly valuable motifs, which commonly occur in complex drug and natural product architectures, can now be accessed in a single operational step. Going beyond carbonyl addition, seminal contributions from Fagnoni and MacMillan preconized photocatalytic HAT-based acyl radical formation as a key aldehyde valorization strategy. Our group articulated this concept, leveraging carboxy radicals as hydrogen atom abstractors in high regio- and chemoselective carbonyl alkynylation and aldehyde trifluoromethylthiolation.This Account, in addition to the narrative of our group and others' contributions at the interface between carbonyl addition and radical-based photochemistry, aims to provide core guiding foundations toward novel disruptive synthetic developments. We envisage that extending radical-to-polar crossovers beyond Nozaki-Hiyama-Kishi manifolds, taming less-activated carbonyls, leveraging multicomponent processes, and merging single electron steps with energy-transfer events will propel eminent breakthroughs in the near future.
羰基作为一个基本的骨架,在学术和工业领域的许多重要化学反应中都扮演着普遍存在的角色。古老的转化反应,包括醛醇缩合反应、格氏反应、Wittig 反应和 Nozaki-Hiyama-Kishi 反应,构成了一个庞大而强大的合成武器库。尽管如此,双电子机制本质上限制了可及的反应性和拓扑模式的广度。受光氧化还原催化快速发展的推动,结合根深蒂固的羰基加成和自由基可以利用几种独特且日益可持续的转化。特别是,一些不寻常的碳-碳和碳-杂原子的断裂,这些在双电子羰基化学中是无法实现的,可以被设想出来。为了实现这一目标,开发了一种将简单的羰基化合物作为分子间自由基受体的新策略。该反应是通过可见光光氧化还原引发的空穴催化来实现的。羰基部分的原位 Brønsted 酸活化可防止β-断裂的发生。此外,这种区域选择性的烷基自由基加成反应避免了金属、配体或添加剂的使用,因此在温和条件下具有很高的原子经济性。基于相同的概念和 Schindler 及其同事的工作,可见光诱导的羰基-烯烃交叉复分解也已经实现,利用了自由基 Prins 消除序列。最近,我们和 Kanai 开发了双铬和光氧化还原催化,为备受推崇的 Nozaki-Hiyama-Kishi 反应提供了一种互补的方法。利用光和金属之间的交织协同作用,已经开发出几种向杰出分子基序的自由基到极性交叉转化。例如,醛的还原烷基化和自由基羰基烷基化等反应可以利用光的力量并启用催化铬金属的使用。总的来说,通过高度紧凑的过渡态可以实现极好的非对映选择性水平。其他例子,如 1,3-二烯的二烷基化和自由基羰基炔丙基化,展示了在多组分偶联努力中自由基和羰基加成的多功能组合。现在可以在单个操作步骤中获得在复杂药物和天然产物结构中常见的高价值基序。超越羰基加成,Fagnoni 和 MacMillan 的开创性贡献将基于光催化 HAT 的酰基自由基形成作为一种关键的醛增值策略。我们的小组阐述了这个概念,利用羧基自由基作为高区域和化学选择性的羰基炔基化和醛三氟甲硫基化中的氢原子攫取剂。本报告除了叙述我们小组和其他小组在羰基加成和基于自由基的光化学界面上的贡献外,还旨在为新的突破性合成发展提供核心指导基础。我们预计,将自由基到极性的交叉扩展到 Nozaki-Hiyama-Kishi 之外,驯服不太活跃的羰基,利用多组分过程,并将单电子步骤与能量转移事件结合起来,将在不久的将来推动显著的突破。