Institut Pasteur, Université de Paris, CNRS UMR3528, Biochimie des Interactions Macromoléculaires, F-75015, Paris, France.
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-sur-Yvette, France.
PLoS One. 2022 Mar 31;17(3):e0265511. doi: 10.1371/journal.pone.0265511. eCollection 2022.
In many Gram-negative bacteria, the stress sigma factor of RNA polymerase, σS/RpoS, remodels global gene expression to reshape the physiology of quiescent cells and ensure their survival under non-optimal growth conditions. In the foodborne pathogen Salmonella enterica serovar Typhimurium, σS is also required for biofilm formation and virulence. We have previously identified sRNAs genes positively controlled by σS in Salmonella, including the two paralogous sRNA genes, ryhB1 and ryhB2/isrE. Expression of ryhB1 and ryhB2 is repressed by the ferric uptake regulator Fur when iron is available. In this study, we show that σS alleviates Fur-mediated repression of the ryhB genes and of additional Fur target genes. Moreover, σS induces transcription of the manganese transporter genes mntH and sitABCD and prevents their repression, not only by Fur, but also by the manganese-responsive regulator MntR. These findings prompted us to evaluate the impact of a ΔrpoS mutation on the Salmonella ionome. Inductively coupled plasma mass spectrometry analyses revealed a significant effect of the ΔrpoS mutation on the cellular concentration of manganese, magnesium, cobalt and potassium. In addition, transcriptional fusions in several genes involved in the transport of these ions were regulated by σS. This study suggests that σS controls fluxes of ions that might be important for the fitness of quiescent cells. Consistent with this hypothesis, the ΔrpoS mutation extended the lag phase of Salmonella grown in rich medium supplemented with the metal ion chelator EDTA, and this effect was abolished when magnesium, but not manganese or iron, was added back. These findings unravel the importance of σS and magnesium in the regrowth potential of quiescent cells.
在许多革兰氏阴性菌中,RNA 聚合酶的应激σ因子σS/RpoS 重塑了全局基因表达,重塑了静止细胞的生理学特性,并确保了它们在非最佳生长条件下的生存。在食源性病原体鼠伤寒沙门氏菌中,σS 也是生物膜形成和毒力所必需的。我们之前已经确定了受σS 正向调控的沙门氏菌中的 sRNA 基因,包括两个平行的 sRNA 基因 ryhB1 和 ryhB2/isrE。当铁可用时,ryhB1 和 ryhB2 的表达受到铁摄取调节因子 Fur 的抑制。在这项研究中,我们表明 σS 减轻了 Fur 对 ryhB 基因和其他 Fur 靶基因的抑制作用。此外,σS 诱导锰转运基因 mntH 和 sitABCD 的转录,并防止它们被 Fur 和锰反应调节因子 MntR 抑制。这些发现促使我们评估 rpoS 缺失突变对沙门氏菌离子组的影响。电感耦合等离子体质谱分析显示 rpoS 缺失突变对锰、镁、钴和钾的细胞浓度有显著影响。此外,这些离子转运相关基因的转录融合受σS 调控。这项研究表明,σS 控制着可能对静止细胞适应性很重要的离子通量。与这一假设一致,rpoS 缺失突变延长了在富含培养基中生长的沙门氏菌的延迟期,当添加镁而不是锰或铁时,这种效应被消除。这些发现揭示了σS 和镁在静止细胞再生长能力中的重要性。