Thapa Rahul, Garikipati Anurag, Shokouhi Sepideh, Hurtado Myrna, Barnes Gina, Hoffman Jana, Calvert Jacob, Katzmann Lynne, Mao Qingqing, Das Ritankar
Dascena Inc., Houston, TX, United States.
Juniper Communities, Bloomfield, NJ, United States.
JMIR Aging. 2022 Apr 1;5(2):e35373. doi: 10.2196/35373.
Short-term fall prediction models that use electronic health records (EHRs) may enable the implementation of dynamic care practices that specifically address changes in individualized fall risk within senior care facilities.
The aim of this study is to implement machine learning (ML) algorithms that use EHR data to predict a 3-month fall risk in residents from a variety of senior care facilities providing different levels of care.
This retrospective study obtained EHR data (2007-2021) from Juniper Communities' proprietary database of 2785 individuals primarily residing in skilled nursing facilities, independent living facilities, and assisted living facilities across the United States. We assessed the performance of 3 ML-based fall prediction models and the Juniper Communities' fall risk assessment. Additional analyses were conducted to examine how changes in the input features, training data sets, and prediction windows affected the performance of these models.
The Extreme Gradient Boosting model exhibited the highest performance, with an area under the receiver operating characteristic curve of 0.846 (95% CI 0.794-0.894), specificity of 0.848, diagnostic odds ratio of 13.40, and sensitivity of 0.706, while achieving the best trade-off in balancing true positive and negative rates. The number of active medications was the most significant feature associated with fall risk, followed by a resident's number of active diseases and several variables associated with vital signs, including diastolic blood pressure and changes in weight and respiratory rates. The combination of vital signs with traditional risk factors as input features achieved higher prediction accuracy than using either group of features alone.
This study shows that the Extreme Gradient Boosting technique can use a large number of features from EHR data to make short-term fall predictions with a better performance than that of conventional fall risk assessments and other ML models. The integration of routinely collected EHR data, particularly vital signs, into fall prediction models may generate more accurate fall risk surveillance than models without vital signs. Our data support the use of ML models for dynamic, cost-effective, and automated fall predictions in different types of senior care facilities.
使用电子健康记录(EHRs)的短期跌倒预测模型可能有助于实施动态护理措施,专门应对老年护理机构中个体跌倒风险的变化。
本研究的目的是实施机器学习(ML)算法,利用EHR数据预测来自提供不同护理水平的各类老年护理机构居民未来3个月的跌倒风险。
这项回顾性研究从瞻博社区的专有数据库中获取了2007年至2021年的EHR数据,该数据库包含2785名主要居住在美国的熟练护理机构、独立生活设施和辅助生活设施中的个体。我们评估了3种基于ML的跌倒预测模型和瞻博社区跌倒风险评估的性能。还进行了额外分析,以研究输入特征、训练数据集和预测窗口的变化如何影响这些模型的性能。
极端梯度提升模型表现出最高性能,受试者工作特征曲线下面积为0.846(95%CI 0.794 - 0.894),特异性为0.848,诊断比值比为13.40,敏感性为0.706,同时在平衡真阳性和真阴性率方面实现了最佳权衡。正在使用的药物数量是与跌倒风险最相关的显著特征,其次是居民的现存疾病数量以及与生命体征相关的几个变量,包括舒张压以及体重和呼吸频率的变化。将生命体征与传统风险因素结合作为输入特征,比单独使用任何一组特征都能实现更高的预测准确性。
本研究表明,极端梯度提升技术可以利用EHR数据中的大量特征进行短期跌倒预测,其性能优于传统的跌倒风险评估和其他ML模型。将常规收集的EHR数据,特别是生命体征,整合到跌倒预测模型中,可能比不包含生命体征的模型产生更准确的跌倒风险监测。我们的数据支持在不同类型的老年护理机构中使用ML模型进行动态、具有成本效益和自动化的跌倒预测。