Alford-Lago D J, Curtis C W, Ihler A T, Issan O
Naval Information Warfare Center Pacific, San Diego, California 92152, USA.
Department of Mathematics and Statistics, San Diego State University, San Diego, California 92182, USA.
Chaos. 2022 Mar;32(3):033116. doi: 10.1063/5.0073893.
Koopman operator theory shows how nonlinear dynamical systems can be represented as an infinite-dimensional, linear operator acting on a Hilbert space of observables of the system. However, determining the relevant modes and eigenvalues of this infinite-dimensional operator can be difficult. The extended dynamic mode decomposition (EDMD) is one such method for generating approximations to Koopman spectra and modes, but the EDMD method faces its own set of challenges due to the need of user defined observables. To address this issue, we explore the use of autoencoder networks to simultaneously find optimal families of observables, which also generate both accurate embeddings of the flow into a space of observables and submersions of the observables back into flow coordinates. This network results in a global transformation of the flow and affords future state prediction via the EDMD and the decoder network. We call this method the deep learning dynamic mode decomposition (DLDMD). The method is tested on canonical nonlinear data sets and is shown to produce results that outperform a standard DMD approach and enable data-driven prediction where the standard DMD fails.
库普曼算子理论展示了非线性动力系统如何被表示为一个作用于系统可观测量的希尔伯特空间上的无限维线性算子。然而,确定这个无限维算子的相关模式和特征值可能会很困难。扩展动态模式分解(EDMD)就是一种用于生成库普曼谱和模式近似值的方法,但由于需要用户定义可观测量,EDMD方法面临着自身的一系列挑战。为了解决这个问题,我们探索使用自动编码器网络来同时找到最优的可观测量族,这些可观测量族还能生成流到可观测量空间的精确嵌入以及可观测量回到流坐标的浸没。这个网络导致流的全局变换,并通过EDMD和解码器网络实现未来状态预测。我们将这种方法称为深度学习动态模式分解(DLDMD)。该方法在典型非线性数据集上进行了测试,结果表明它产生的结果优于标准DMD方法,并且在标准DMD失败的数据驱动预测中也能实现。