Suppr超能文献

用于三维图像重建及深部脑外科手术引导的机器人辅助脑室镜检查的临床前开发

Pre-Clinical Development of Robot-Assisted Ventriculoscopy for 3D Image Reconstruction and Guidance of Deep Brain Neurosurgery.

作者信息

Vagdargi Prasad, Uneri Ali, Jones Craig K, Wu Pengwei, Han Runze, Luciano Mark G, Anderson William S, Helm Patrick A, Hager Gregory D, Siewerdsen Jeffrey H

机构信息

Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218 USA.

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.

出版信息

IEEE Trans Med Robot Bionics. 2022 Feb;4(1):28-37. doi: 10.1109/tmrb.2021.3125322. Epub 2021 Nov 13.

Abstract

Conventional neuro-navigation can be challenged in targeting deep brain structures via transventricular neuroendoscopy due to unresolved geometric error following soft-tissue deformation. Current robot-assisted endoscopy techniques are fairly limited, primarily serving to planned trajectories and provide a stable scope holder. We report the implementation of a robot-assisted ventriculoscopy (RAV) system for 3D reconstruction, registration, and augmentation of the neuroendoscopic scene with intraoperative imaging, enabling guidance even in the presence of tissue deformation and providing visualization of structures beyond the endoscopic field-of-view. Phantom studies were performed to quantitatively evaluate image sampling requirements, registration accuracy, and computational runtime for two reconstruction methods and a variety of clinically relevant ventriculoscope trajectories. A median target registration error of 1.2 mm was achieved with an update rate of 2.34 frames per second, validating the RAV concept and motivating translation to future clinical studies.

摘要

由于软组织变形后未解决的几何误差,传统神经导航在通过经脑室神经内镜靶向深部脑结构时可能会受到挑战。当前的机器人辅助内镜技术相当有限,主要用于规划轨迹并提供稳定的内镜固定装置。我们报告了一种机器人辅助脑室镜检查(RAV)系统的实施,该系统用于神经内镜场景的三维重建、配准和增强,并结合术中成像,即使在存在组织变形的情况下也能实现引导,并提供内镜视野之外结构的可视化。进行了模拟研究,以定量评估两种重建方法以及各种临床相关脑室镜轨迹的图像采样要求、配准精度和计算运行时间。实现了平均目标配准误差为1.2毫米,更新速率为每秒2.34帧,验证了RAV概念并推动其转化为未来的临床研究。

相似文献

1
Pre-Clinical Development of Robot-Assisted Ventriculoscopy for 3D Image Reconstruction and Guidance of Deep Brain Neurosurgery.
IEEE Trans Med Robot Bionics. 2022 Feb;4(1):28-37. doi: 10.1109/tmrb.2021.3125322. Epub 2021 Nov 13.
2
A momentum-based diffeomorphic demons framework for deformable MR-CT image registration.
Phys Med Biol. 2018 Oct 24;63(21):215006. doi: 10.1088/1361-6560/aae66c.
3
Augmented reality-guided neurosurgery: accuracy and intraoperative application of an image projection technique.
J Neurosurg. 2015 Jul;123(1):206-11. doi: 10.3171/2014.9.JNS141001. Epub 2015 Mar 6.
4
A surgical robot with augmented reality visualization for stereoelectroencephalography electrode implantation.
Int J Comput Assist Radiol Surg. 2017 Aug;12(8):1355-1368. doi: 10.1007/s11548-017-1634-1. Epub 2017 Jun 29.
5
Three-Dimensional, computer simulated navigation in endoscopic neurosurgery.
Interdiscip Neurosurg. 2017 Jun;8:17-22. doi: 10.1016/j.inat.2017.01.003.
6
IBIS: an OR ready open-source platform for image-guided neurosurgery.
Int J Comput Assist Radiol Surg. 2017 Mar;12(3):363-378. doi: 10.1007/s11548-016-1478-0. Epub 2016 Aug 31.
8
Fusion and visualization of intraoperative cortical images with preoperative models for epilepsy surgical planning and guidance.
Comput Aided Surg. 2011;16(4):149-60. doi: 10.3109/10929088.2011.585805. Epub 2011 Jun 13.
10
Image-guided minimally invasive endopancreatic surgery using a computer-assisted navigation system.
Surg Endosc. 2021 Apr;35(4):1610-1617. doi: 10.1007/s00464-020-07540-5. Epub 2020 Apr 6.

本文引用的文献

1
Implication of image guidance in endoscopic third ventriculostomy: Technical note.
Surg Neurol Int. 2020 May 2;11:87. doi: 10.25259/SNI_408_2019. eCollection 2020.
2
Whole Stomach 3D Reconstruction and Frame Localization From Monocular Endoscope Video.
IEEE J Transl Eng Health Med. 2019 Oct 18;7:3300310. doi: 10.1109/JTEHM.2019.2946802. eCollection 2019.
3
Frameless ROSA® Robot-Assisted Lead Implantation for Deep Brain Stimulation: Technique and Accuracy.
Oper Neurosurg (Hagerstown). 2020 Jul 1;19(1):57-64. doi: 10.1093/ons/opz320.
4
Real-time intraoperative ultrasound in brain surgery: neuronavigation and use of contrast-enhanced image fusion.
Quant Imaging Med Surg. 2019 Mar;9(3):350-358. doi: 10.21037/qims.2019.03.06.
5
Evaluation and Stability Analysis of Video-Based Navigation System for Functional Endoscopic Sinus Surgery on In Vivo Clinical Data.
IEEE Trans Med Imaging. 2018 Oct;37(10):2185-2195. doi: 10.1109/TMI.2018.2833868. Epub 2018 May 7.
6
Frameless Functional Stereotactic Approaches.
Prog Neurol Surg. 2018;33:168-186. doi: 10.1159/000481102. Epub 2018 Jan 12.
7
Robot-assisted endoscopic third ventriculostomy: institutional experience in 9 patients.
J Neurosurg Pediatr. 2017 Aug;20(2):125-133. doi: 10.3171/2017.3.PEDS16636. Epub 2017 Jun 9.
8
Long-Term Clinical Outcome of Internal Globus Pallidus Deep Brain Stimulation for Dystonia.
PLoS One. 2016 Jan 8;11(1):e0146644. doi: 10.1371/journal.pone.0146644. eCollection 2016.
9
Deep Brain Stimulation in Tourette's Syndrome.
Front Neurol. 2015 Aug 4;6:170. doi: 10.3389/fneur.2015.00170. eCollection 2015.
10
Deep brain stimulation for severe autism: from pathophysiology to procedure.
Neurosurg Focus. 2015 Jun;38(6):E3. doi: 10.3171/2015.3.FOCUS1548.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验