Vagdargi Prasad, Uneri Ali, Jones Craig K, Wu Pengwei, Han Runze, Luciano Mark G, Anderson William S, Helm Patrick A, Hager Gregory D, Siewerdsen Jeffrey H
Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218 USA.
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
IEEE Trans Med Robot Bionics. 2022 Feb;4(1):28-37. doi: 10.1109/tmrb.2021.3125322. Epub 2021 Nov 13.
Conventional neuro-navigation can be challenged in targeting deep brain structures via transventricular neuroendoscopy due to unresolved geometric error following soft-tissue deformation. Current robot-assisted endoscopy techniques are fairly limited, primarily serving to planned trajectories and provide a stable scope holder. We report the implementation of a robot-assisted ventriculoscopy (RAV) system for 3D reconstruction, registration, and augmentation of the neuroendoscopic scene with intraoperative imaging, enabling guidance even in the presence of tissue deformation and providing visualization of structures beyond the endoscopic field-of-view. Phantom studies were performed to quantitatively evaluate image sampling requirements, registration accuracy, and computational runtime for two reconstruction methods and a variety of clinically relevant ventriculoscope trajectories. A median target registration error of 1.2 mm was achieved with an update rate of 2.34 frames per second, validating the RAV concept and motivating translation to future clinical studies.
由于软组织变形后未解决的几何误差,传统神经导航在通过经脑室神经内镜靶向深部脑结构时可能会受到挑战。当前的机器人辅助内镜技术相当有限,主要用于规划轨迹并提供稳定的内镜固定装置。我们报告了一种机器人辅助脑室镜检查(RAV)系统的实施,该系统用于神经内镜场景的三维重建、配准和增强,并结合术中成像,即使在存在组织变形的情况下也能实现引导,并提供内镜视野之外结构的可视化。进行了模拟研究,以定量评估两种重建方法以及各种临床相关脑室镜轨迹的图像采样要求、配准精度和计算运行时间。实现了平均目标配准误差为1.2毫米,更新速率为每秒2.34帧,验证了RAV概念并推动其转化为未来的临床研究。