Suppr超能文献

基于深度学习的人工智能提高了易错肺结节的准确率。

Deep Learning-based Artificial Intelligence Improves Accuracy of Error-prone Lung Nodules.

机构信息

Division of Pulmonary Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan.

School of Medicine, Tzu Chi University, Hualien, Taiwan.

出版信息

Int J Med Sci. 2022 Mar 6;19(3):490-498. doi: 10.7150/ijms.69400. eCollection 2022.

Abstract

Early detection of lung cancer is one way to improve outcomes. Improving the detection of nodules on chest CT scans is important. Previous artificial intelligence (AI) modules show rapid advantages, which improves the performance of detecting lung nodules in some datasets. However, they have a high false-positive (FP) rate. Its effectiveness in clinical practice has not yet been fully proven. We aimed to use AI assistance in CT scans to decrease FP. CT images of 60 patients were obtained. Five senior doctors who were blinded to these cases participated in this study for the detection of lung nodules. Two doctors performed manual detection and labeling of lung nodules without AI assistance. Another three doctors used AI assistance to detect and label lung nodules before manual interpretation. The AI program is based on a deep learning framework. In total, 266 nodules were identified. For doctors without AI assistance, the FP was 0.617-0.650/scan and the sensitivity was 59.2-67.0%. For doctors with AI assistance, the FP was 0.067 to 0.2/scan and the sensitivity was 59.2-77.3% This AI-assisted program significantly reduced FP. The error-prone characteristics of lung nodules were central locations, ground-glass appearances, and small sizes. The AI-assisted program improved the detection of error-prone nodules. Detection of lung nodules is important for lung cancer treatment. When facing a large number of CT scans, error-prone nodules are a great challenge for doctors. The AI-assisted program improved the performance of detecting lung nodules, especially for error-prone nodules.

摘要

早期发现肺癌是改善预后的一种方法。提高胸部 CT 扫描中结节的检测能力非常重要。以前的人工智能(AI)模块显示出快速的优势,这提高了在一些数据集检测肺结节的性能。然而,它们的假阳性(FP)率很高。其在临床实践中的有效性尚未得到充分证明。我们旨在使用 CT 扫描中的人工智能辅助来减少 FP。

获取了 60 名患者的 CT 图像。5 名对这些病例不知情的资深医生参与了这项研究,以检测肺结节。两位医生在没有 AI 辅助的情况下手动检测和标记肺结节。另外三位医生在手动解释之前使用 AI 辅助来检测和标记肺结节。AI 程序基于深度学习框架。

总共发现了 266 个结节。对于没有 AI 辅助的医生,FP 为 0.617-0.650/扫描,灵敏度为 59.2-67.0%。对于有 AI 辅助的医生,FP 为 0.067 至 0.2/扫描,灵敏度为 59.2-77.3%。该 AI 辅助程序显著降低了 FP。结节易错的特征是中央位置、磨玻璃样外观和较小的尺寸。AI 辅助程序提高了易错结节的检测能力。

肺结节的检测对肺癌治疗很重要。当面对大量 CT 扫描时,易错结节对医生来说是一个巨大的挑战。AI 辅助程序提高了肺结节的检测性能,特别是对易错结节。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/295f/8964321/0e95769959c3/ijmsv19p0490g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验