Schellenberg Melanie, Dreher Kris K, Holzwarth Niklas, Isensee Fabian, Reinke Annika, Schreck Nicholas, Seitel Alexander, Tizabi Minu D, Maier-Hein Lena, Gröhl Janek
Computer Assisted Medical Interventions (CAMI), German Cancer Research Center (DKFZ), Heidelberg, Germany.
Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany.
Photoacoustics. 2022 Mar 5;26:100341. doi: 10.1016/j.pacs.2022.100341. eCollection 2022 Jun.
Photoacoustic (PA) imaging has the potential to revolutionize functional medical imaging in healthcare due to the valuable information on tissue physiology contained in multispectral photoacoustic measurements. Clinical translation of the technology requires conversion of the high-dimensional acquired data into clinically relevant and interpretable information. In this work, we present a deep learning-based approach to semantic segmentation of multispectral photoacoustic images to facilitate image interpretability. Manually annotated photoacoustic and ultrasound imaging data are used as reference and enable the training of a deep learning-based segmentation algorithm in a supervised manner. Based on a validation study with experimentally acquired data from 16 healthy human volunteers, we show that automatic tissue segmentation can be used to create powerful analyses and visualizations of multispectral photoacoustic images. Due to the intuitive representation of high-dimensional information, such a preprocessing algorithm could be a valuable means to facilitate the clinical translation of photoacoustic imaging.
由于多光谱光声测量中包含的关于组织生理学的宝贵信息,光声(PA)成像有潜力彻底改变医疗保健中的功能医学成像。该技术的临床转化需要将高维采集数据转换为临床相关且可解释的信息。在这项工作中,我们提出了一种基于深度学习的方法来对多光谱光声图像进行语义分割,以促进图像的可解释性。手动标注的光声和超声成像数据用作参考,并能够以监督方式训练基于深度学习的分割算法。基于对16名健康人类志愿者的实验获取数据的验证研究,我们表明自动组织分割可用于创建多光谱光声图像的强大分析和可视化。由于高维信息的直观表示,这样的预处理算法可能是促进光声成像临床转化的有价值手段。