Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
Department of Otolaryngology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, Shanxi, China.
J Assoc Res Otolaryngol. 2022 Jun;23(3):435-453. doi: 10.1007/s10162-022-00839-1. Epub 2022 Apr 4.
Vestibular evoked myogenic potentials (VEMPs) are routinely used to test otolith function, but which specific vestibular afferent neurons and central circuits are activated by auditory frequency VEMP stimuli remains unclear. To examine this question, we analyzed the sensitivity of individual vestibular afferents in adult Sprague-Dawley rats to tone bursts delivered at 9 frequencies (125-4000 Hz) and 3 intensity levels (60, 70, 80 dB SL re: acoustic brainstem response (ABR) threshold). Afferent neuron tone sensitivity was quantified by the cumulative probability of evoking a spike (CPE). Based on a threshold CPE of 0.1, acoustic stimuli in the present study evoked responses in 78.2 % (390/499) of otolith afferent neurons vs. 48.4 % (431/891) of canal afferent neurons. Organ-specific vestibular inputs to the central nervous system in response to tone bursts differ based on intensity and frequency content of the stimulus. At frequencies below 500 Hz, tone bursts primarily activated both otolith afferents, even at the highest intensity tested (80 dB SL re ABR threshold). At 1500 Hz, however, tone bursts activated the canal and otolith afferents at the moderate and high intensities tested (70, 80 dB SL), but activated only otolith afferents at the low intensity tested (60 dB SL). Within an end organ, diversity of sensitivity between individual afferent neurons correlated with spontaneous discharge rate and regularity. Examination of inner ear fluid mechanics in silico suggests that the frequency response and preferential activation of the otolith organs likely arise from inner ear fluid motion trapped near the oval and round windows. These results provide insight into understanding the mechanisms of sound activation of the vestibular system and developing novel discriminative VEMP testing protocols and interpretative guidelines in humans.
前庭诱发肌源性电位 (VEMP) 通常用于测试耳石功能,但听觉频率 VEMP 刺激激活的特定前庭传入神经元和中枢回路仍不清楚。为了研究这个问题,我们分析了成年 Sprague-Dawley 大鼠的单个前庭传入神经元对 9 种频率(125-4000 Hz)和 3 种强度水平(60、70、80 dB SL 相对于听性脑干反应 (ABR) 阈值)的纯音刺激的敏感性。传入神经元的音调敏感性通过诱发尖峰的累积概率 (CPE) 来量化。基于阈值 CPE 为 0.1,本研究中的声学刺激在 78.2%(390/499)的耳石传入神经元中引起反应,而在 48.4%(431/891)的管传入神经元中引起反应。基于刺激的强度和频率内容,听觉刺激对中枢神经系统的器官特异性前庭输入不同。在低于 500 Hz 的频率下,即使在测试的最高强度(80 dB SL 相对于 ABR 阈值)下,纯音刺激也主要激活耳石传入神经元。然而,在 1500 Hz 时,纯音刺激在测试的中高强度(70、80 dB SL)下激活了管和耳石传入神经元,但在测试的低强度(60 dB SL)下仅激活了耳石传入神经元。在一个终末器官内,个体传入神经元之间敏感性的多样性与自发性放电率和规律性相关。对体内内耳流体力学的研究表明,耳石器官的频率响应和优先激活可能源于被困在卵圆窗和圆窗附近的内耳流体运动。这些结果为理解声音激活前庭系统的机制以及开发新的有区别的 VEMP 测试方案和人类解释性指南提供了深入的认识。