Suppr超能文献

鉴定基质金属蛋白酶-1中α-突触核蛋白聚集物的变构指纹,并利用单分子见解进行底物特异性虚拟筛选。

Identification of allosteric fingerprints of alpha-synuclein aggregates in matrix metalloprotease-1 and substrate-specific virtual screening with single molecule insights.

机构信息

Department of Physics, Colorado School of Mines, Golden, CO, USA.

Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.

出版信息

Sci Rep. 2022 Apr 6;12(1):5764. doi: 10.1038/s41598-022-09866-7.

Abstract

Alpha-synuclein (aSyn) has implications in pathological protein aggregations in neurodegeneration. Matrix metalloproteases (MMPs) are broad-spectrum proteases and cleave aSyn, leading to aggregation. Previous reports showed that allosteric communications between the two domains of MMP1 on collagen fibril and fibrin depend on substrates, activity, and ligands. This paper reports quantification of allostery using single molecule measurements of MMP1 dynamics on aSyn-induced aggregates by calculating Forster Resonance Energy Transfer (FRET) between two dyes attached to the catalytic and hemopexin domains of MMP1. The two domains of MMP1 prefer open conformations that are inhibited by a single point mutation E219Q of MMP1 and tetracycline, an MMP inhibitor. A two-state Poisson process describes the interdomain dynamics, where the two states and kinetic rates of interconversion between them are obtained from histograms and autocorrelations of FRET values. Since a crystal structure of aSyn-bound MMP1 is unavailable, binding poses were predicted by molecular docking of MMP1 with aSyn using ClusPro. MMP1 dynamics were simulated using predicted binding poses and compared with the experimental interdomain dynamics to identify an appropriate pose. The selected aSyn-MMP1 binding pose near aSyn residue K45 was simulated and analyzed to define conformational changes at the catalytic site. Allosteric residues in aSyn-bound MMP1 exhibiting strong correlations with the catalytic motif residues were compared with allosteric residues in free MMP1, and aSyn-specific residues were identified. The allosteric residues in aSyn-bound MMP1 are K281, T283, G292, G327, L328, E329, R337, F343, G345, N346, Y348, G353, Q354, D363, Y365, S366, S367, F368, P371, R372, V374, K375, A379, F391, A394, R399, M414, F419, V426, and C466. Shannon entropy was defined to quantify MMP1 dynamics. Virtual screening was performed against a site on selected aSyn-MMP1 binding poses, which showed that lead molecules differ between free MMP1 and substrate-bound MMP1. Also, identifying aSyn-specific allosteric residues in MMP1 enabled further selection of lead molecules. In other words, virtual screening needs to take substrates into account for potential substrate-specific control of MMP1 activity in the future. Molecular understanding of interactions between MMP1 and aSyn-induced aggregates may open up the possibility of degrading aggregates by targeting MMPs.

摘要

α-突触核蛋白(aSyn)在神经退行性变中的病理性蛋白聚集中具有重要意义。基质金属蛋白酶(MMPs)是广谱蛋白酶,可切割 aSyn,导致聚集。先前的报告表明,MMP1 在胶原纤维和纤维蛋白上的两个结构域之间的变构通讯取决于底物、活性和配体。本文使用两种附着于 MMP1 的催化和血红素结合结构域的染料之间的Förster 共振能量转移(FRET),通过计算单分子测量 MMP1 在 aSyn 诱导的聚集物上的动力学,报告了变构作用的定量。MMP1 的两个结构域优先采用开放构象,该构象受 MMP1 的单点突变 E219Q 和四环素(一种 MMP 抑制剂)抑制。双态泊松过程描述了结构域间动力学,其中两个状态和它们之间的转换动力学速率是从 FRET 值的直方图和自相关获得的。由于缺乏与 aSyn 结合的 MMP1 的晶体结构,因此使用 ClusPro 通过 MMP1 与 aSyn 的分子对接预测了结合构象。使用预测的结合构象模拟了 MMP1 的动力学,并将其与实验结构域间动力学进行比较,以确定合适的构象。模拟并分析了靠近 aSyn 残基 K45 的选定 aSyn-MMP1 结合构象,以定义催化位点的构象变化。与游离 MMP1 中的变构残基进行比较,并鉴定了 aSyn 特异性残基,鉴定了与催化基序残基具有强相关性的 aSyn 结合的 MMP1 中的变构残基。与游离 MMP1 中的变构残基相比,与催化基序残基具有强相关性的 aSyn 结合的 MMP1 中的变构残基,鉴定了 aSyn 特异性残基。aSyn 结合的 MMP1 中的变构残基是 K281、T283、G292、G327、L328、E329、R337、F343、G345、N346、Y348、G353、Q354、D363、Y365、S366、S367、F368、P371、R372、V374、K375、A379、F391、A394、R399、M414、F419、V426 和 C466。定义香农熵来量化 MMP1 动力学。针对选定的 aSyn-MMP1 结合构象上的一个位点进行虚拟筛选,结果表明游离 MMP1 和底物结合的 MMP1 之间的先导分子存在差异。此外,鉴定 MMP1 中的 aSyn 特异性变构残基可进一步选择先导分子。换句话说,虚拟筛选需要考虑底物,以便在未来对 MMP1 活性进行潜在的底物特异性控制。对 MMP1 与 aSyn 诱导的聚集物之间相互作用的分子理解可能为通过靶向 MMPs 降解聚集物开辟可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97a5/8987064/86356aec6ef7/41598_2022_9866_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验