School of Natural Sciences, Massey University, Palmerston North, New Zealand.
AgResearch Grasslands Research Centre, Palmerston North, New Zealand.
Ann Bot. 2023 Feb 7;131(1):33-44. doi: 10.1093/aob/mcac051.
Polyploidy is an important process that often generates genomic diversity within lineages, but it can also cause changes that result in loss of genomic material. Island lineages, while often polyploid, typically show chromosomal stasis but have not been investigated in detail regarding smaller-scale gene loss. Our aim was to investigate post-polyploidization genome dynamics in a chromosomally stable lineage of Malvaceae endemic to New Zealand.
We determined chromosome numbers and used fluorescence in situ hybridization to localize 18S and 5S rDNA. Gene sequencing of 18S rDNA, the internal transcribed spacers (ITS) with intervening 5.8S rDNA, and a low-copy nuclear gene, GBSSI-1, was undertaken to determine if gene loss occurred in the New Zealand lineage following polyploidy.
The chromosome number for all species investigated was 2n = 42, with the first published report for the monotypic Australian genus Asterotrichion. The five species investigated all had two 5S rDNA signals localized interstitially on the long arm of one of the largest chromosome pairs. All species, except Plagianthus regius, had two 18S rDNA signals localized proximally on the short arm of one of the smallest chromosome pairs. Plagianthus regius had two additional 18S rDNA signals on a separate chromosome, giving a total of four. Sequencing of nuclear ribosomal 18S rDNA and the ITS cistron indicated loss of historical ribosomal repeats. Phylogenetic analysis of a low-copy nuclear gene, GBSSI-1, indicated that some lineages maintained three copies of the locus, while others have lost one or two copies.
Although island endemic lineages show chromosomal stasis, with no additional changes in chromosome number, they may undergo smaller-scale processes of gene loss and concerted evolution ultimately leading to further genome restructuring and downsizing.
多倍体是一个重要的过程,它经常在谱系内产生基因组多样性,但也会导致导致基因组物质丢失的变化。岛屿谱系虽然通常是多倍体,但通常表现出染色体静止,但在较小规模的基因丢失方面尚未进行详细研究。我们的目的是研究新西兰特有锦葵科染色体稳定谱系中的多倍化后基因组动态。
我们确定了染色体数目,并使用荧光原位杂交定位 18S 和 5S rDNA。对 18S rDNA、内部转录间隔区(ITS)及其间的 5.8S rDNA 以及低拷贝核基因 GBSSI-1 进行基因测序,以确定新西兰谱系在多倍化后是否发生了基因丢失。
所有研究物种的染色体数均为 2n=42,这是首次报道澳大利亚单种属 Asterotrichion 的染色体数。研究的五个物种均具有两个 5S rDNA 信号,定位于最大染色体对之一的长臂间位。除了 Plagianthus regius 外,所有物种的 18S rDNA 信号均定位于最小染色体对之一的短臂近端。Plagianthus regius 在另一条染色体上还有两个额外的 18S rDNA 信号,总共为四个。核核糖体 18S rDNA 和 ITS 顺式的测序表明历史核糖体重复序列丢失。低拷贝核基因 GBSSI-1 的系统发育分析表明,一些谱系保持三个拷贝的基因座,而其他谱系则丢失了一个或两个拷贝。
尽管岛屿特有谱系表现出染色体静止,染色体数目没有增加,但它们可能经历较小规模的基因丢失和协同进化过程,最终导致进一步的基因组重排和缩小。