Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America.
Department of Statistics, Columbia University, New York, New York, United States of America.
PLoS Comput Biol. 2022 Apr 8;18(4):e1009991. doi: 10.1371/journal.pcbi.1009991. eCollection 2022 Apr.
Cellular barcoding methods offer the exciting possibility of 'infinite-pseudocolor' anatomical reconstruction-i.e., assigning each neuron its own random unique barcoded 'pseudocolor,' and then using these pseudocolors to trace the microanatomy of each neuron. Here we use simulations, based on densely-reconstructed electron microscopy microanatomy, with signal structure matched to real barcoding data, to quantify the feasibility of this procedure. We develop a new blind demixing approach to recover the barcodes that label each neuron, and validate this method on real data with known barcodes. We also develop a neural network which uses the recovered barcodes to reconstruct the neuronal morphology from the observed fluorescence imaging data, 'connecting the dots' between discontiguous barcode amplicon signals. We find that accurate recovery should be feasible, provided that the barcode signal density is sufficiently high. This study suggests the possibility of mapping the morphology and projection pattern of many individual neurons simultaneously, at high resolution and at large scale, via conventional light microscopy.
细胞条形码方法提供了一种令人兴奋的“无限伪彩色”解剖重建的可能性,即给每个神经元分配其自己的随机独特条形码“伪彩色”,然后使用这些伪彩色来追踪每个神经元的微观解剖结构。在这里,我们使用基于密集重建的电子显微镜微观解剖结构的模拟,并与真实条形码数据匹配的信号结构,来定量评估该过程的可行性。我们开发了一种新的盲分离方法来恢复标记每个神经元的条形码,并使用具有已知条形码的真实数据对该方法进行验证。我们还开发了一种神经网络,该神经网络使用恢复的条形码来从观察到的荧光成像数据中重建神经元形态,从而在不连续的条形码扩增信号之间“连接点”。我们发现,只要条形码信号密度足够高,准确的恢复应该是可行的。这项研究表明,通过传统的光学显微镜,以高分辨率和大尺度同时绘制许多单个神经元的形态和投射模式是有可能的。