Suppr超能文献

基于机器学习的肿瘤预后预测模型的方法学研究:系统评价。

Methodological conduct of prognostic prediction models developed using machine learning in oncology: a systematic review.

机构信息

Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.

NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.

出版信息

BMC Med Res Methodol. 2022 Apr 8;22(1):101. doi: 10.1186/s12874-022-01577-x.

Abstract

BACKGROUND

Describe and evaluate the methodological conduct of prognostic prediction models developed using machine learning methods in oncology.

METHODS

We conducted a systematic review in MEDLINE and Embase between 01/01/2019 and 05/09/2019, for studies developing a prognostic prediction model using machine learning methods in oncology. We used the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement, Prediction model Risk Of Bias ASsessment Tool (PROBAST) and CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS) to assess the methodological conduct of included publications. Results were summarised by modelling type: regression-, non-regression-based and ensemble machine learning models.

RESULTS

Sixty-two publications met inclusion criteria developing 152 models across all publications. Forty-two models were regression-based, 71 were non-regression-based and 39 were ensemble models. A median of 647 individuals (IQR: 203 to 4059) and 195 events (IQR: 38 to 1269) were used for model development, and 553 individuals (IQR: 69 to 3069) and 50 events (IQR: 17.5 to 326.5) for model validation. A higher number of events per predictor was used for developing regression-based models (median: 8, IQR: 7.1 to 23.5), compared to alternative machine learning (median: 3.4, IQR: 1.1 to 19.1) and ensemble models (median: 1.7, IQR: 1.1 to 6). Sample size was rarely justified (n = 5/62; 8%). Some or all continuous predictors were categorised before modelling in 24 studies (39%). 46% (n = 24/62) of models reporting predictor selection before modelling used univariable analyses, and common method across all modelling types. Ten out of 24 models for time-to-event outcomes accounted for censoring (42%). A split sample approach was the most popular method for internal validation (n = 25/62, 40%). Calibration was reported in 11 studies. Less than half of models were reported or made available.

CONCLUSIONS

The methodological conduct of machine learning based clinical prediction models is poor. Guidance is urgently needed, with increased awareness and education of minimum prediction modelling standards. Particular focus is needed on sample size estimation, development and validation analysis methods, and ensuring the model is available for independent validation, to improve quality of machine learning based clinical prediction models.

摘要

背景

描述和评估使用机器学习方法在肿瘤学中开发的预后预测模型的方法学表现。

方法

我们在 MEDLINE 和 Embase 中进行了一项系统评价,时间范围为 2019 年 1 月 1 日至 2019 年 5 月 9 日,纳入使用机器学习方法在肿瘤学中开发预后预测模型的研究。我们使用了多变量预测模型个体预后或诊断透明报告(TRIPOD)声明、预测模型风险偏倚评估工具(PROBAST)和用于系统评价预测模型研究的关键评估和数据提取清单(CHARMS)来评估纳入研究的方法学表现。结果根据建模类型进行总结:回归型、非回归型和集成机器学习模型。

结果

62 篇文献符合纳入标准,共涉及 152 个模型。42 个模型为回归型,71 个为非回归型,39 个为集成模型。模型开发中中位数使用了 647 名个体(IQR:203 至 4059)和 195 个事件(IQR:38 至 1269),模型验证中中位数使用了 553 名个体(IQR:69 至 3069)和 50 个事件(IQR:17.5 至 326.5)。与替代机器学习和集成模型相比,回归型模型开发中使用了更多的每个预测因子的事件(中位数:8,IQR:7.1 至 23.5)。很少有研究对样本量进行了充分说明(n=5/62;8%)。24 项研究(39%)在建模前对某些或所有连续预测因子进行了分类。46%(n=24/62)报告在建模前进行预测因子选择的模型使用了单变量分析,这是所有建模类型中常见的方法。24 项用于时间事件结局的模型中,有 10 项(42%)考虑了删失。内部验证中最常用的方法是样本分割法(n=25/62,40%)。11 项研究报告了校准情况。不到一半的模型得到了报告或提供。

结论

基于机器学习的临床预测模型的方法学表现较差。迫切需要指导,提高对最小预测模型标准的认识和教育。特别需要关注样本量估计、开发和验证分析方法,并确保模型可供独立验证,以提高基于机器学习的临床预测模型的质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb37/8991704/33df25a12521/12874_2022_1577_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验