Suppr超能文献

在单细胞中绘制染色质环。

Mapping chromatin loops in single cells.

机构信息

State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.

Department of Genetics, University of North Carolina, Chapel Hill, NC, USA; Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA; Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA.

出版信息

Trends Genet. 2022 Jul;38(7):637-640. doi: 10.1016/j.tig.2022.03.007. Epub 2022 Apr 7.

Abstract

Recent advances in high-throughput chromatin conformation capture (Hi-C) technologies at the single-cell level enable the identification of cell type-specific chromatin loops directly from complex tissues. This may help to interpret noncoding variants identified by genome-wide association studies (GWAS) in disease-relevant cell types. We briefly review current experimental and computational strategies for mapping chromatin loops in single cells.

摘要

单细胞水平高通量染色质构象捕获(Hi-C)技术的最新进展使我们能够直接从复杂组织中鉴定出特定于细胞类型的染色质环。这可能有助于解释在疾病相关细胞类型中通过全基因组关联研究(GWAS)鉴定的非编码变体。我们简要回顾了当前用于在单细胞中绘制染色质环的实验和计算策略。

相似文献

1
Mapping chromatin loops in single cells.
Trends Genet. 2022 Jul;38(7):637-640. doi: 10.1016/j.tig.2022.03.007. Epub 2022 Apr 7.
4
DLoopCaller: A deep learning approach for predicting genome-wide chromatin loops by integrating accessible chromatin landscapes.
PLoS Comput Biol. 2022 Oct 7;18(10):e1010572. doi: 10.1371/journal.pcbi.1010572. eCollection 2022 Oct.
5
Comparison of computational methods for 3D genome analysis at single-cell Hi-C level.
Methods. 2020 Oct 1;181-182:52-61. doi: 10.1016/j.ymeth.2019.08.005. Epub 2019 Aug 21.
7
Single-cell Hi-C data analysis: safety in numbers.
Brief Bioinform. 2021 Nov 5;22(6). doi: 10.1093/bib/bbab316.
8
Novel insights into chromosomal conformations in cancer.
Mol Cancer. 2017 Nov 17;16(1):173. doi: 10.1186/s12943-017-0741-5.
9
Easy Hi-C: A Low-Input Method for Capturing Genome Organization.
Methods Mol Biol. 2023;2599:113-125. doi: 10.1007/978-1-0716-2847-8_9.
10
SnapHiC2: A computationally efficient loop caller for single cell Hi-C data.
Comput Struct Biotechnol J. 2022 Jun 1;20:2778-2783. doi: 10.1016/j.csbj.2022.05.046. eCollection 2022.

引用本文的文献

1
Circuit Topology Analysis of Single-Cell HiC Data.
Methods Mol Biol. 2024;2819:27-38. doi: 10.1007/978-1-0716-3930-6_2.
2
A Lightweight Framework For Chromatin Loop Detection at the Single-Cell Level.
Adv Sci (Weinh). 2023 Nov;10(33):e2303502. doi: 10.1002/advs.202303502. Epub 2023 Oct 10.
4
SnapFISH: a computational pipeline to identify chromatin loops from multiplexed DNA FISH data.
Nat Commun. 2023 Aug 12;14(1):4873. doi: 10.1038/s41467-023-40658-3.
5
Understanding the function of regulatory DNA interactions in the interpretation of non-coding GWAS variants.
Front Cell Dev Biol. 2022 Aug 19;10:957292. doi: 10.3389/fcell.2022.957292. eCollection 2022.
6
SnapHiC2: A computationally efficient loop caller for single cell Hi-C data.
Comput Struct Biotechnol J. 2022 Jun 1;20:2778-2783. doi: 10.1016/j.csbj.2022.05.046. eCollection 2022.
7
Understanding Regulatory Mechanisms of Brain Function and Disease through 3D Genome Organization.
Genes (Basel). 2022 Mar 25;13(4):586. doi: 10.3390/genes13040586.

本文引用的文献

1
Multiscale and integrative single-cell Hi-C analysis with Higashi.
Nat Biotechnol. 2022 Feb;40(2):254-261. doi: 10.1038/s41587-021-01034-y. Epub 2021 Oct 11.
2
DNA methylation atlas of the mouse brain at single-cell resolution.
Nature. 2021 Oct;598(7879):120-128. doi: 10.1038/s41586-020-03182-8. Epub 2021 Oct 6.
3
SnapHiC: a computational pipeline to identify chromatin loops from single-cell Hi-C data.
Nat Methods. 2021 Sep;18(9):1056-1059. doi: 10.1038/s41592-021-01231-2. Epub 2021 Aug 26.
4
High-content single-cell combinatorial indexing.
Nat Biotechnol. 2021 Dec;39(12):1574-1580. doi: 10.1038/s41587-021-00962-z. Epub 2021 Jul 5.
6
Capturing cell type-specific chromatin compartment patterns by applying topic modeling to single-cell Hi-C data.
PLoS Comput Biol. 2020 Sep 18;16(9):e1008173. doi: 10.1371/journal.pcbi.1008173. eCollection 2020 Sep.
7
Parental-to-embryo switch of chromosome organization in early embryogenesis.
Nature. 2020 Apr;580(7801):142-146. doi: 10.1038/s41586-020-2125-z. Epub 2020 Mar 25.
8
Simultaneous profiling of 3D genome structure and DNA methylation in single human cells.
Nat Methods. 2019 Oct;16(10):999-1006. doi: 10.1038/s41592-019-0547-z. Epub 2019 Sep 9.
9
Joint profiling of DNA methylation and chromatin architecture in single cells.
Nat Methods. 2019 Oct;16(10):991-993. doi: 10.1038/s41592-019-0502-z. Epub 2019 Aug 5.
10
Robust single-cell Hi-C clustering by convolution- and random-walk-based imputation.
Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):14011-14018. doi: 10.1073/pnas.1901423116. Epub 2019 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验