McCoy Timothy J, Dibb Steven D, Peplowski Patrick N, Maurel Clara, Bercovici Hannah L, Corrigan Catherine M, Bell James F, Weiss Benjamin P, Lawrence David J, Wenkert Daniel D, Prettyman Thomas H, Elkins-Tanton Lindy T
Dept. of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0119 USA.
School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 USA.
Space Sci Rev. 2022;218(2):6. doi: 10.1007/s11214-022-00872-9. Epub 2022 Mar 1.
The Psyche mission's Oxidation-Reduction Working Group is focused on understanding, determining, and applying the redox state of (16) Psyche to understand the origin of a metal-rich world. The oxidation-reduction state of an asteroid, along with its temperature, parent body size, and composition, is a key parameter in determining the history of an asteroid. Determining the redox state from spacecraft data is most easily done by examining potential metal-oxide buffer pairs. The occurrence of Ni, Fe, C, Cr, P and Si, in that order, in the metal or sulfide phase of an asteroidal body indicates increasingly reduced conditions. Key observations by the Imager and Gamma-Ray and Neutron Spectrometer (GRNS) of Psyche can bracket the redox state using metal-oxide buffers. The presence of Fe,Ni metal can be confirmed by the ratios of Fe/O or Fe/Si and the concentration of Ni variability in metal across the asteroid can be determined by GRNS. The FeO concentration of silicates is complementary to the Ni concentration of metal and can be constrained using filters on the Imager. The presence of FeO in silicates from ground-based observations is one of the few measurements we already have of redox state, although available data permit a wide range of silicate compositions and mineralogies. The presence of C, P or Si concentrated in the metallic, Fe-rich portion of the asteroid, as measured by GRNS, or Ca-sulfide, determined by imaging, would indicate increasingly reducing conditions. Linkage to known types of meteorites, whether metal-rich chondrites, stony-irons or irons, expands the mineralogical, chemical and isotopic data not available from remote observations alone. Redox also controls both silicate and metal mineralogy, influencing differentiation, solidification, and subsolidus cooling, including the relative abundance of sulfur in the core and possible magnetic signatures. The redox state of Psyche, if a fully-differentiated metallic core, might constrain the location and timing of both the formation of Psyche and any oxidation it might have experienced.
“心灵”号任务的氧化还原工作组专注于了解、确定并应用(16)“心灵”号的氧化还原状态,以探究富含金属的世界的起源。小行星的氧化还原状态,连同其温度、母体大小和成分,是决定小行星历史的关键参数。通过航天器数据确定氧化还原状态,最容易的方法是检查潜在的金属氧化物缓冲对。小行星体金属或硫化物相中按此顺序出现的镍、铁、碳、铬、磷和硅,表明还原条件越来越强。“心灵”号的成像仪以及伽马射线和中子光谱仪(GRNS)的关键观测结果,可以利用金属氧化物缓冲对来界定氧化还原状态。铁镍金属的存在可以通过铁/氧或铁/硅的比率来确认,并且GRNS可以确定整个小行星上金属中镍含量变化的浓度。硅酸盐中的氧化亚铁浓度与金属中的镍浓度互补,可以使用成像仪上的滤镜来加以限制。尽管现有数据允许存在多种硅酸盐成分和矿物学,但通过地面观测得出的硅酸盐中氧化亚铁的存在情况,是我们目前为数不多的氧化还原状态测量数据之一。GRNS测量显示,小行星富含铁的金属部分中集中存在碳、磷或硅,或者成像确定存在硫化钙,这将表明还原条件越来越强。与已知类型陨石(无论是富金属球粒陨石、石铁陨石还是铁陨石)的联系,扩展了仅靠遥感观测无法获得的矿物学、化学和同位素数据。氧化还原还控制着硅酸盐和金属矿物学,影响着分异、固化和亚固相线冷却,包括地核中硫的相对丰度以及可能的磁特征。如果“心灵”号有一个完全分异的金属内核,那么它的氧化还原状态可能会限制“心灵”号的形成位置和时间以及它可能经历的任何氧化过程。