Gaar Elisabeth, Siebenhofer Melanie, Wiegele Angelika
Institute of Production and Logistics Management, Johannes Kepler University Linz, Altenberger Straß 69, 4040 Linz, Austria.
Institut für Mathematik, Alpen-Adria-Universität Klagenfurt, Universitätsstraße 65-67, 9020 Klagenfurt, Austria.
Math Methods Oper Res (Heidelb). 2022;95(1):141-161. doi: 10.1007/s00186-022-00773-1. Epub 2022 Mar 12.
Finding the stability number of a graph, i.e., the maximum number of vertices of which no two are adjacent, is a well known NP-hard combinatorial optimization problem. Since this problem has several applications in real life, there is need to find efficient algorithms to solve this problem. Recently, Gaar and Rendl enhanced semidefinite programming approaches to tighten the upper bound given by the Lovász theta function. This is done by carefully selecting some so-called exact subgraph constraints (ESC) and adding them to the semidefinite program of computing the Lovász theta function. First, we provide two new relaxations that allow to compute the bounds faster without substantial loss of the quality of the bounds. One of these two relaxations is based on including violated facets of the polytope representing the ESCs, the other one adds separating hyperplanes for that polytope. Furthermore, we implement a branch and bound (B&B) algorithm using these tightened relaxations in our bounding routine. We compare the efficiency of our B&B algorithm using the different upper bounds. It turns out that already the bounds of Gaar and Rendl drastically reduce the number of nodes to be explored in the B&B tree as compared to the Lovász theta bound. However, this comes with a high computational cost. Our new relaxations improve the run time of the overall B&B algorithm, while keeping the number of nodes in the B&B tree small.
找到图的稳定数,即互不相邻的顶点的最大数量,是一个著名的NP难组合优化问题。由于该问题在现实生活中有多种应用,因此需要找到高效的算法来解决此问题。最近,加尔(Gaar)和伦德尔(Rendl)改进了半定规划方法,以收紧由洛瓦兹西塔函数给出的上界。这是通过精心选择一些所谓的精确子图约束(ESC)并将其添加到计算洛瓦兹西塔函数的半定规划中来实现的。首先,我们提供了两种新的松弛方法,它们能够更快地计算边界,而不会大幅损失边界的质量。这两种松弛方法中的一种基于包含表示ESC的多面体的违反面,另一种则为该多面体添加分离超平面。此外,我们在边界例程中使用这些收紧的松弛方法实现了一种分支定界(B&B)算法。我们使用不同的上界比较了我们的B&B算法的效率。结果表明,与洛瓦兹西塔边界相比,加尔和伦德尔的边界已经大幅减少了B&B树中要探索的节点数量。然而,这伴随着高昂的计算成本。我们的新松弛方法提高了整体B&B算法的运行时间,同时保持B&B树中的节点数量较少。