Wang Pengcheng, Ding Xinying, Zhe Rongjie, Zhu Ting, Qing Chen, Liu Yingkai, Wang Hong-En
Yunnan Key Laboratory of Optoelectronic Information Technology, College of Physics and Electronics Information, Yunnan Normal University, Kunming 650500, China.
Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, China.
Nanomaterials (Basel). 2022 Mar 26;12(7):1094. doi: 10.3390/nano12071094.
Developing high-performance electrode materials is in high demand for the development of supercapacitors. Herein, defect and interface engineering has been simultaneously realized in NiMoO nanowire arrays (NWAs) using a simple sucrose coating followed by an annealing process. The resultant hierarchical oxygen-deficient NiMoO@C NWAs (denoted as "NiMoO@C") are grown directly on conductive ferronickel foam substrates. This composite affords direct electrical contact with the substrates and directional electron transport, as well as short ionic diffusion pathways. Furthermore, the coating of the amorphous carbon shell and the introduction of oxygen vacancies effectively enhance the electrical conductivity of NiMoO. In addition, the coated carbon layer improves the structural stability of the NiMoO in the whole charging and discharging process, significantly enhancing the cycling stability of the electrode. Consequently, the NiMoO@C electrode delivers a high areal capacitance of 2.24 F cm (1720 F g) at a current density of 1 mA cm and superior cycling stability of 84.5% retention after 6000 cycles at 20 mA cm. Furthermore, an asymmetric super-capacitor device (ASC) has been constructed with NiMoO@C as the positive electrode and activated carbon (AC) as the negative electrode. The as-assembled ASC device shows excellent electrochemical performance with a high energy density of 51.6 W h kg at a power density of 203.95 W kg. Moreover, the NiMoO//AC ASC device manifests remarkable cyclability with 84.5% of capacitance retention over 6000 cycles. The results demonstrate that the NiMoO@C composite is a promising material for electrochemical energy storage. This work can give new insights on the design and development of novel functional electrode materials via defect and interface engineering through simple yet effective chemical routes.
开发高性能电极材料对超级电容器的发展至关重要。在此,通过简单的蔗糖涂层和退火工艺,在NiMoO纳米线阵列(NWAs)中同时实现了缺陷和界面工程。所得的分级缺氧NiMoO@C NWAs(记为“NiMoO@C”)直接生长在导电铁镍泡沫基板上。这种复合材料提供了与基板的直接电接触和定向电子传输,以及短的离子扩散路径。此外,非晶碳壳的涂层和氧空位的引入有效地提高了NiMoO的电导率。此外,涂覆的碳层提高了NiMoO在整个充放电过程中的结构稳定性,显著增强了电极的循环稳定性。因此,NiMoO@C电极在1 mA cm的电流密度下具有2.24 F cm(1720 F g)的高面积电容,在20 mA cm下经过6000次循环后具有84.5%的优异循环稳定性。此外,构建了一种不对称超级电容器装置(ASC),以NiMoO@C作为正极,活性炭(AC)作为负极。组装好的ASC装置表现出优异的电化学性能,在203.95 W kg的功率密度下具有51.6 W h kg的高能量密度。此外,NiMoO//AC ASC装置表现出显著的循环性能,在6000次循环中电容保持率为84.5%。结果表明,NiMoO@C复合材料是一种有前途的电化学储能材料。这项工作可以通过简单而有效的化学路线,通过缺陷和界面工程,为新型功能电极材料的设计和开发提供新的见解。