He Chubin, Xu Xiuru, Lin Yang, Cui Yang, Peng Zhengchun
Center of Stretchable Electronics and Nanosensors, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
Nanomaterials (Basel). 2022 Mar 29;12(7):1137. doi: 10.3390/nano12071137.
Conductive hydrogels are widely used in sports monitoring, healthcare, energy storage, and other fields, due to their excellent physical and chemical properties. However, synthesizing a hydrogel with synergistically good mechanical and electrical properties is still challenging. Current fabrication strategies are mainly focused on the polymerization of hydrogels with a single component, with less emphasis on combining and matching different conductive hydrogels. Inspired by the gradient modulus structures of the human skin, we propose a bilayer structure of conductive hydrogels, composed of a spray-coated poly(3,4-dihydrothieno-1,4-dioxin): poly(styrene sulfonate) (PEDOT:PSS) as the bonding interface, a relatively low modulus hydrogel on the top, and a relatively high modulus hydrogel on the bottom. The spray-coated PEDOT:PSS constructs an interlocking interface between the top and bottom hydrogels. Compared to the single layer counterparts, both the mechanical and electrical properties were significantly improved. The as-prepared hydrogel showed outstanding stretchability (1763.85 ± 161.66%), quite high toughness (9.27 ± 0.49 MJ/m3), good tensile strength (0.92 ± 0.08 MPa), and decent elastic modulus (69.16 ± 8.02 kPa). A stretchable strain sensor based on the proposed hydrogel shows good conductivity (1.76 S/m), high sensitivity (a maximum gauge factor of 18.14), and a wide response range (0−1869%). Benefitting from the modulus matching between the two layers of the hydrogels, the interfacial interlocking network, and the patch effect of the PEDOT:PSS, the strain sensor exhibits excellent interface robustness with stable performance (>12,500 cycles). These results indicate that the proposed bilayer conductive hydrogel is a promising material for stretchable electronics, soft robots, and next-generation wearables.
导电水凝胶因其优异的物理和化学性质而被广泛应用于运动监测、医疗保健、能量存储等领域。然而,合成一种同时具有良好机械性能和电学性能的水凝胶仍然具有挑战性。目前的制备策略主要集中在单一组分水凝胶的聚合上,较少关注不同导电水凝胶的组合和匹配。受人体皮肤梯度模量结构的启发,我们提出了一种导电水凝胶的双层结构,由喷涂的聚(3,4-二氢噻吩并[3,4-b]噻吩-1,4-二酮):聚(苯乙烯磺酸盐)(PEDOT:PSS)作为粘结界面,顶部是模量相对较低的水凝胶,底部是模量相对较高的水凝胶。喷涂的PEDOT:PSS在顶部和底部水凝胶之间构建了一个互锁界面。与单层对应物相比,其机械性能和电学性能均得到显著改善。所制备的水凝胶表现出出色的拉伸性(1763.85±161.66%)、相当高的韧性(9.27±0.49 MJ/m³)、良好的拉伸强度(0.92±0.08 MPa)和 decent 弹性模量(69.16±8.02 kPa)。基于所提出的水凝胶的可拉伸应变传感器显示出良好的导电性(1.76 S/m)、高灵敏度(最大应变系数为18.14)和宽响应范围(0−1869%)。受益于水凝胶两层之间的模量匹配、界面互锁网络以及PEDOT:PSS的贴片效应,应变传感器表现出优异的界面鲁棒性,性能稳定(>12500次循环)。这些结果表明,所提出的双层导电水凝胶是用于可拉伸电子器件、软体机器人和下一代可穿戴设备的有前途的材料。