Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, ROC.
Imaging and Visualization Group, ABCS, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
Sci Rep. 2022 Apr 12;12(1):6111. doi: 10.1038/s41598-022-09985-1.
Accurate glioma subtype classification is critical for the treatment management of patients with brain tumors. Developing an automatically computer-aided algorithm for glioma subtype classification is challenging due to many factors. One of the difficulties is the label constraint. Specifically, each case is simply labeled the glioma subtype without precise annotations of lesion regions information. In this paper, we propose a novel hybrid fully convolutional neural network (CNN)-based method for glioma subtype classification using both whole slide imaging (WSI) and multiparametric magnetic resonance imagings (mpMRIs). It is comprised of two methods: a WSI-based method and a mpMRIs-based method. For the WSI-based method, we categorize the glioma subtype using a 2D CNN on WSIs. To overcome the label constraint issue, we extract the truly representative patches for the glioma subtype classification in a weakly supervised fashion. For the mpMRIs-based method, we develop a 3D CNN-based method by analyzing the mpMRIs. The mpMRIs-based method consists of brain tumor segmentation and classification. Finally, to enhance the robustness of the predictions, we fuse the WSI-based and mpMRIs-based results guided by a confidence index. The experimental results on the validation dataset in the competition of CPM-RadPath 2020 show the comprehensive judgments from both two modalities can achieve better performance than the ones by solely using WSI or mpMRIs. Furthermore, our result using the proposed method ranks the third place in the CPM-RadPath 2020 in the testing phase. The proposed method demonstrates a competitive performance, which is creditable to the success of weakly supervised approach and the strategy of label agreement from multi-modality data.
准确的脑肿瘤胶质瘤亚型分类对于脑肿瘤患者的治疗管理至关重要。由于许多因素的影响,开发一种自动的计算机辅助胶质瘤亚型分类算法具有挑战性。其中一个困难是标签约束。具体来说,每个病例仅简单地标记为胶质瘤亚型,而没有对病变区域信息进行精确注释。在本文中,我们提出了一种新颖的基于混合全卷积神经网络(CNN)的方法,用于使用全切片成像(WSI)和多参数磁共振成像(mpMRI)进行胶质瘤亚型分类。它由两种方法组成:一种基于 WSI 的方法和一种基于 mpMRI 的方法。对于基于 WSI 的方法,我们使用 2D CNN 在 WSI 上对胶质瘤亚型进行分类。为了克服标签约束问题,我们以弱监督的方式提取真正代表胶质瘤亚型的代表性斑块进行分类。对于基于 mpMRI 的方法,我们通过分析 mpMRI 开发了一种基于 3D CNN 的方法。mpMRI 基于方法由脑肿瘤分割和分类组成。最后,为了提高预测的稳健性,我们在置信指数的指导下融合基于 WSI 和基于 mpMRI 的结果。在 2020 年 CPM-RadPath 竞赛的验证数据集上的实验结果表明,两种模态的综合判断比仅使用 WSI 或 mpMRI 具有更好的性能。此外,我们在 2020 年 CPM-RadPath 竞赛的测试阶段使用提出的方法获得了第三名的成绩。该方法表现出有竞争力的性能,这得益于弱监督方法和多模态数据标签一致性策略的成功。