Renaud Nicolas, Jung Yong, Honavar Vasant, Geng Cunliang, Bonvin Alexandre M J J, Xue Li C
Netherlands eScience Center, Science Park 140, 1098 XG, Amsterdam, The Netherlands.
Bioinformatics & Genomics Graduate Program, Pennsylvania State University, University Park, PA 16802, USA.
SoftwareX. 2020 Jan-Jun;11. doi: 10.1016/j.softx.2020.100462. Epub 2020 Apr 22.
Computational docking is a promising tool to model three-dimensional (3D) structures of protein-protein complexes, which provides fundamental insights of protein functions in the cellular life. Singling out near-native models from the huge pool of generated docking models (referred to as the scoring problem) remains as a major challenge in computational docking. We recently published iScore, a novel graph kernel based scoring function. iScore ranks docking models based on their interface graph similarities to the training interface graph set. iScore uses a support vector machine approach with random-walk graph kernels to classify and rank protein-protein interfaces. Here, we present the software for iScore. The software provides executable scripts that fully automate the computational workflow. In addition, the creation and analysis of the interface graph can be distributed across different processes using Message Passing interface (MPI) and can be offloaded to GPUs thanks to dedicated CUDA kernels.
计算对接是一种用于模拟蛋白质-蛋白质复合物三维(3D)结构的有前途的工具,它为细胞生命中蛋白质功能提供了基本见解。从大量生成的对接模型中挑选出接近天然的模型(即评分问题)仍然是计算对接中的一项重大挑战。我们最近发表了iScore,一种基于图核的新型评分函数。iScore根据对接模型与训练界面图集的界面图相似性对其进行排名。iScore使用带有随机游走图核的支持向量机方法对蛋白质-蛋白质界面进行分类和排名。在此,我们展示了iScore软件。该软件提供了可完全自动化计算工作流程的可执行脚本。此外,界面图的创建和分析可以使用消息传递接口(MPI)分布在不同进程中,并且由于有专用的CUDA内核,还可以卸载到GPU上。