Suppr超能文献

整合非小细胞肺癌基因突变互斥信息的KRAS基因突变预测的放射组学算法的建立与优化

Establishment and Optimization of Radiomics Algorithms for Prediction of KRAS Gene Mutation by Integration of NSCLC Gene Mutation Mutual Exclusion Information.

作者信息

Wang Jingyi, Lv Xing, Huang Weicheng, Quan Zhiyong, Li Guiyu, Wu Shuo, Wang Yirong, Xie Zhaojuan, Yan Yuhao, Li Xiang, Ma Wenhui, Yang Weidong, Cao Xin, Kang Fei, Wang Jing

机构信息

Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China.

Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China.

出版信息

Front Pharmacol. 2022 Apr 1;13:862581. doi: 10.3389/fphar.2022.862581. eCollection 2022.

Abstract

To assess the significance of mutation mutual exclusion information in the optimization of radiomics algorithms for predicting gene mutation. We retrospectively analyzed 258 non-small cell lung cancer (NSCLC) patients. Patients were randomly divided into training ( = 180) and validation ( = 78) cohorts. Based on radiomics features, radiomics score (RS) models were developed for predicting KRAS proto-oncogene mutations. Furthermore, a composite model combining mixedRS and epidermal growth factor receptor (EGFR) mutation status was developed. Compared with CT model, the PET/CT radiomics score model exhibited higher AUC for predicting KRAS mutations (0.834 vs. 0.770). By integrating EGFR mutation information into the PET/CT RS model, the AUC, sensitivity, specificity, and accuracy for predicting KRAS mutations were all elevated in the validation cohort (0.921, 0.949, 0.872, 0.910 vs. 0.834, 0.923, 0.641, 0.782). By adding EGFR exclusive mutation information, the composite model corrected 64.3% false positive cases produced by the PET/CT RS model in the validation cohort. Integrating EGFR mutation status has potential utility for the optimization of radiomics models for prediction of KRAS gene mutations. This method may be used when repeated biopsies would carry unacceptable risks for the patient.

摘要

为评估突变互斥信息在优化预测基因突变的放射组学算法中的意义。我们回顾性分析了258例非小细胞肺癌(NSCLC)患者。患者被随机分为训练组(n = 180)和验证组(n = 78)。基于放射组学特征,开发了用于预测KRAS原癌基因突变的放射组学评分(RS)模型。此外,还开发了一个结合混合RS和表皮生长因子受体(EGFR)突变状态的复合模型。与CT模型相比,PET/CT放射组学评分模型在预测KRAS突变方面表现出更高的AUC(0.834对0.770)。通过将EGFR突变信息整合到PET/CT RS模型中,验证组中预测KRAS突变的AUC、敏感性、特异性和准确性均有所提高(0.921、0.949、0.872、0.910对0.834、0.923、0.641、0.782)。通过添加EGFR排他性突变信息,复合模型校正了验证组中PET/CT RS模型产生的64.3%的假阳性病例。整合EGFR突变状态对优化预测KRAS基因突变的放射组学模型具有潜在效用。当重复活检对患者有不可接受的风险时,可采用此方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb67/9010886/7a7ab169d418/fphar-13-862581-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验