Wang Jingyi, Lv Xing, Huang Weicheng, Quan Zhiyong, Li Guiyu, Wu Shuo, Wang Yirong, Xie Zhaojuan, Yan Yuhao, Li Xiang, Ma Wenhui, Yang Weidong, Cao Xin, Kang Fei, Wang Jing
Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
Front Pharmacol. 2022 Apr 1;13:862581. doi: 10.3389/fphar.2022.862581. eCollection 2022.
To assess the significance of mutation mutual exclusion information in the optimization of radiomics algorithms for predicting gene mutation. We retrospectively analyzed 258 non-small cell lung cancer (NSCLC) patients. Patients were randomly divided into training ( = 180) and validation ( = 78) cohorts. Based on radiomics features, radiomics score (RS) models were developed for predicting KRAS proto-oncogene mutations. Furthermore, a composite model combining mixedRS and epidermal growth factor receptor (EGFR) mutation status was developed. Compared with CT model, the PET/CT radiomics score model exhibited higher AUC for predicting KRAS mutations (0.834 vs. 0.770). By integrating EGFR mutation information into the PET/CT RS model, the AUC, sensitivity, specificity, and accuracy for predicting KRAS mutations were all elevated in the validation cohort (0.921, 0.949, 0.872, 0.910 vs. 0.834, 0.923, 0.641, 0.782). By adding EGFR exclusive mutation information, the composite model corrected 64.3% false positive cases produced by the PET/CT RS model in the validation cohort. Integrating EGFR mutation status has potential utility for the optimization of radiomics models for prediction of KRAS gene mutations. This method may be used when repeated biopsies would carry unacceptable risks for the patient.
为评估突变互斥信息在优化预测基因突变的放射组学算法中的意义。我们回顾性分析了258例非小细胞肺癌(NSCLC)患者。患者被随机分为训练组(n = 180)和验证组(n = 78)。基于放射组学特征,开发了用于预测KRAS原癌基因突变的放射组学评分(RS)模型。此外,还开发了一个结合混合RS和表皮生长因子受体(EGFR)突变状态的复合模型。与CT模型相比,PET/CT放射组学评分模型在预测KRAS突变方面表现出更高的AUC(0.834对0.770)。通过将EGFR突变信息整合到PET/CT RS模型中,验证组中预测KRAS突变的AUC、敏感性、特异性和准确性均有所提高(0.921、0.949、0.872、0.910对0.834、0.923、0.641、0.782)。通过添加EGFR排他性突变信息,复合模型校正了验证组中PET/CT RS模型产生的64.3%的假阳性病例。整合EGFR突变状态对优化预测KRAS基因突变的放射组学模型具有潜在效用。当重复活检对患者有不可接受的风险时,可采用此方法。