Suppr超能文献

快速有效地预测 SARS-CoV-2 主蛋白酶和 20S 蛋白酶体共价抑制剂的绝对结合自由能。

Fast and Effective Prediction of the Absolute Binding Free Energies of Covalent Inhibitors of SARS-CoV-2 Main Protease and 20S Proteasome.

机构信息

Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen, 518172, China.

Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.

出版信息

J Am Chem Soc. 2022 May 4;144(17):7568-7572. doi: 10.1021/jacs.2c00853. Epub 2022 Apr 18.

Abstract

The COVID-19 pandemic has been a public health emergency with continuously evolving deadly variants around the globe. Among many preventive and therapeutic strategies, the design of covalent inhibitors targeting the main protease (M) of SARS-CoV-2 that causes COVID-19 has been one of the hotly pursued areas. Currently, about 30% of marketed drugs that target enzymes are covalent inhibitors. Such inhibitors have been shown in recent years to have many advantages that counteract past reservation of their potential off-target activities, which can be minimized by modulation of the electrophilic warhead and simultaneous optimization of nearby noncovalent interactions. This process can be greatly accelerated by exploration of binding affinities using computational models, which are not well-established yet due to the requirement of capturing the chemical nature of covalent bond formation. Here, we present a robust computational method for effective prediction of absolute binding free energies (ABFEs) of covalent inhibitors. This is done by integrating the protein dipoles Langevin dipoles method (in the PDLD/S-LRA/β version) with quantum mechanical calculations of the energetics of the reaction of the warhead and its amino acid target, in water. This approach evaluates the combined effects of the covalent and noncovalent contributions. The applicability of the method is illustrated by predicting the ABFEs of covalent inhibitors of SARS-CoV-2 M and the 20S proteasome. Our results are found to be reliable in predicting ABFEs for cases where the warheads are significantly different. This computational protocol might be a powerful tool for designing effective covalent inhibitors especially for SARS-CoV-2 M and for targeted protein degradation.

摘要

新冠疫情是一场公共卫生紧急事件,在全球范围内不断出现致命的变异病毒。在众多预防和治疗策略中,设计针对导致 COVID-19 的 SARS-CoV-2 主要蛋白酶 (M) 的共价抑制剂一直是热门研究领域之一。目前,约 30%的靶向酶的上市药物是共价抑制剂。近年来,这些抑制剂具有许多优势,可以抵消过去对其潜在非靶标活性的保留意见,通过调节亲电弹头并同时优化附近的非共价相互作用,可以将其最小化。通过使用计算模型探索结合亲和力,可以大大加速这一过程,但由于需要捕捉共价键形成的化学性质,该模型尚未得到很好的确立。在这里,我们提出了一种用于有效预测共价抑制剂绝对结合自由能 (ABFE) 的稳健计算方法。这是通过将蛋白质偶极 Langevin 偶极子方法(在 PDLD/S-LRA/β 版本中)与弹头及其氨基酸靶标在水中的反应的量子力学计算相结合来实现的。该方法评估了共价和非共价贡献的综合效应。该方法的适用性通过预测 SARS-CoV-2 M 和 20S 蛋白酶体的共价抑制剂的 ABFE 来说明。我们的结果在预测弹头明显不同的情况下预测 ABFE 是可靠的。该计算方案可能是设计有效共价抑制剂的有力工具,特别是针对 SARS-CoV-2 M 和靶向蛋白降解。

相似文献

3
Estimating the binding energetics of reversible covalent inhibitors of the SARS-CoV-2 main protease: an study.
Phys Chem Chem Phys. 2022 Oct 5;24(38):23391-23401. doi: 10.1039/d2cp03080b.
5
Covalent and non-covalent binding free energy calculations for peptidomimetic inhibitors of SARS-CoV-2 main protease.
Phys Chem Chem Phys. 2021 Mar 21;23(11):6746-6757. doi: 10.1039/d1cp00266j. Epub 2021 Mar 12.
6
Synthetic flavonoids as potential antiviral agents against SARS-CoV-2 main protease.
J Biomol Struct Dyn. 2022 May;40(8):3777-3788. doi: 10.1080/07391102.2020.1850359. Epub 2020 Nov 30.
10

引用本文的文献

1
3
Perspectives on Computational Enzyme Modeling: From Mechanisms to Design and Drug Development.
ACS Omega. 2024 Feb 8;9(7):7393-7412. doi: 10.1021/acsomega.3c09084. eCollection 2024 Feb 20.
4
Energetic and structural insights behind calcium induced conformational transition in calmodulin.
Proteins. 2024 Mar;92(3):384-394. doi: 10.1002/prot.26620. Epub 2023 Nov 1.
5
Recent Advances in Alchemical Binding Free Energy Calculations for Drug Discovery.
ACS Med Chem Lett. 2023 Feb 16;14(3):244-250. doi: 10.1021/acsmedchemlett.2c00541. eCollection 2023 Mar 9.
6
Exploring the Phospholipid Transport Mechanism of ATP8A1-CDC50.
Biomedicines. 2023 Feb 13;11(2):546. doi: 10.3390/biomedicines11020546.

本文引用的文献

1
An oral SARS-CoV-2 M inhibitor clinical candidate for the treatment of COVID-19.
Science. 2021 Dec 24;374(6575):1586-1593. doi: 10.1126/science.abl4784. Epub 2021 Nov 2.
2
A Blueprint for High Affinity SARS-CoV-2 Mpro Inhibitors from Activity-Based Compound Library Screening Guided by Analysis of Protein Dynamics.
ACS Pharmacol Transl Sci. 2021 Mar 16;4(3):1079-1095. doi: 10.1021/acsptsci.0c00215. eCollection 2021 Jun 11.
3
Identification of proteasome and caspase inhibitors targeting SARS-CoV-2 M.
Signal Transduct Target Ther. 2021 Jun 1;6(1):214. doi: 10.1038/s41392-021-00639-8.
4
Simulating the directional translocation of a substrate by the AAA+ motor in the 26S proteasome.
Proc Natl Acad Sci U S A. 2021 Jun 8;118(23). doi: 10.1073/pnas.2104245118.
5
SARS-CoV-2 M inhibitors with antiviral activity in a transgenic mouse model.
Science. 2021 Mar 26;371(6536):1374-1378. doi: 10.1126/science.abf1611. Epub 2021 Feb 18.
7
Malleability of the SARS-CoV-2 3CL M Active-Site Cavity Facilitates Binding of Clinical Antivirals.
Structure. 2020 Dec 1;28(12):1313-1320.e3. doi: 10.1016/j.str.2020.10.007. Epub 2020 Oct 23.
8
Discovery of Ketone-Based Covalent Inhibitors of Coronavirus 3CL Proteases for the Potential Therapeutic Treatment of COVID-19.
J Med Chem. 2020 Nov 12;63(21):12725-12747. doi: 10.1021/acs.jmedchem.0c01063. Epub 2020 Oct 15.
9
Covalent allosteric modulation: An emerging strategy for GPCRs drug discovery.
Eur J Med Chem. 2020 Nov 15;206:112690. doi: 10.1016/j.ejmech.2020.112690. Epub 2020 Aug 9.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验