Suppr超能文献

监测推特用户对 COVID-19 疫苗的意见和副作用:推特上的信息流行病学研究。

Monitoring User Opinions and Side Effects on COVID-19 Vaccines in the Twittersphere: Infodemiology Study of Tweets.

机构信息

Department of Mathematics, Computer Science and Physics, University of Udine, Udine, Italy.

Department of Biology, Università degli Studi di Napoli Federico II, Napoli, Italy.

出版信息

J Med Internet Res. 2022 May 13;24(5):e35115. doi: 10.2196/35115.

Abstract

BACKGROUND

In the current phase of the COVID-19 pandemic, we are witnessing the most massive vaccine rollout in human history. Like any other drug, vaccines may cause unexpected side effects, which need to be investigated in a timely manner to minimize harm in the population. If not properly dealt with, side effects may also impact public trust in the vaccination campaigns carried out by national governments.

OBJECTIVE

Monitoring social media for the early identification of side effects, and understanding the public opinion on the vaccines are of paramount importance to ensure a successful and harmless rollout. The objective of this study was to create a web portal to monitor the opinion of social media users on COVID-19 vaccines, which can offer a tool for journalists, scientists, and users alike to visualize how the general public is reacting to the vaccination campaign.

METHODS

We developed a tool to analyze the public opinion on COVID-19 vaccines from Twitter, exploiting, among other techniques, a state-of-the-art system for the identification of adverse drug events on social media; natural language processing models for sentiment analysis; statistical tools; and open-source databases to visualize the trending hashtags, news articles, and their factuality. All modules of the system are displayed through an open web portal.

RESULTS

A set of 650,000 tweets was collected and analyzed in an ongoing process that was initiated in December 2020. The results of the analysis are made public on a web portal (updated daily), together with the processing tools and data. The data provide insights on public opinion about the vaccines and its change over time. For example, users show a high tendency to only share news from reliable sources when discussing COVID-19 vaccines (98% of the shared URLs). The general sentiment of Twitter users toward the vaccines is negative/neutral; however, the system is able to record fluctuations in the attitude toward specific vaccines in correspondence with specific events (eg, news about new outbreaks). The data also show how news coverage had a high impact on the set of discussed topics. To further investigate this point, we performed a more in-depth analysis of the data regarding the AstraZeneca vaccine. We observed how media coverage of blood clot-related side effects suddenly shifted the topic of public discussions regarding both the AstraZeneca and other vaccines. This became particularly evident when visualizing the most frequently discussed symptoms for the vaccines and comparing them month by month.

CONCLUSIONS

We present a tool connected with a web portal to monitor and display some key aspects of the public's reaction to COVID-19 vaccines. The system also provides an overview of the opinions of the Twittersphere through graphic representations, offering a tool for the extraction of suspected adverse events from tweets with a deep learning model.

摘要

背景

在当前的 COVID-19 大流行阶段,我们正在见证人类历史上最大规模的疫苗接种活动。像任何其他药物一样,疫苗可能会引起意想不到的副作用,需要及时进行调查,以最大限度地减少对人群的伤害。如果处理不当,副作用也可能影响公众对各国政府开展的疫苗接种活动的信任。

目的

通过监测社交媒体,及时发现副作用,并了解公众对疫苗的意见,对于确保疫苗接种活动的成功和安全至关重要。本研究的目的是创建一个监测社交媒体用户对 COVID-19 疫苗意见的网络门户,为记者、科学家和用户提供一个工具,以了解公众对疫苗接种活动的反应。

方法

我们开发了一种工具,利用社交媒体上不良药物事件识别的最新技术、情感分析的自然语言处理模型、统计工具和开源数据库,从 Twitter 上分析公众对 COVID-19 疫苗的意见,可视化公众对疫苗接种活动的反应。该系统的所有模块都通过一个开放的网络门户显示。

结果

从 2020 年 12 月开始,我们正在进行一项持续的分析,共收集和分析了 65 万条推文。分析结果在一个网络门户上公布(每天更新),同时还公布了处理工具和数据。这些数据提供了有关公众对疫苗的意见及其随时间变化的见解。例如,用户在讨论 COVID-19 疫苗时,只倾向于分享来自可靠来源的新闻(分享的 URL 中 98%为可靠来源)。Twitter 用户对疫苗的总体情绪是负面/中性的;然而,该系统能够记录出随着特定事件(例如有关新爆发的新闻)的发生,人们对特定疫苗的态度的波动。数据还显示了新闻报道对讨论话题的影响。为了进一步研究这一点,我们对与阿斯利康疫苗相关的数据进行了更深入的分析。我们观察到,与血凝块相关的副作用的媒体报道突然改变了公众对阿斯利康和其他疫苗的讨论话题。当按月比较疫苗最常讨论的症状并将其可视化时,这一点变得尤为明显。

结论

我们展示了一个连接网络门户的工具,用于监测和显示公众对 COVID-19 疫苗反应的一些关键方面。该系统还通过图形表示提供了对 Twitter 观点的概述,为从推文提取疑似不良反应提供了一种工具,使用深度学习模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/243e/9132143/46f05c18e6c9/jmir_v24i5e35115_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验