Jiménez Said, Angeles-Valdez Diego, Rodríguez-Delgado Andrés, Fresán Ana, Miranda Edgar, Alcalá-Lozano Ruth, Duque-Alarcón Xóchitl, Arango de Montis Iván, Garza-Villarreal Eduardo A
Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico.
Instituto de Neurobiología, Universidad Nacional Autónoma de México Campus Juriquilla, Querétaro, Mexico.
J Psychiatr Res. 2022 Jul;151:42-49. doi: 10.1016/j.jpsychires.2022.03.063. Epub 2022 Apr 16.
Only 50% of the patients with Borderline Personality Disorder (BPD) respond to psychotherapies, such as Dialectical Behavioral Therapy (DBT), this might be increased by identifying baseline predictors of clinical change. We use machine learning to detect clinical features that could predict improvement/worsening for severity and impulsivity of BPD after DBT skills training group. To predict illness severity, we analyzed data from 125 patients with BPD divided into 17 DBT psychotherapy groups, and for impulsiveness we analyzed 89 patients distributed into 12 DBT groups. All patients were evaluated at baseline using widely self-report tests; ∼70% of the sample were randomly selected and two machine learning models (lasso and Random forest [Rf]) were trained using 10-fold cross-validation and compared to predict the post-treatment response. Models' generalization was assessed in ∼30% of the remaining sample. Relevant variables for DBT (i.e. the mindfulness ability "non-judging", or "non-planning" impulsiveness) measured at baseline, were robust predictors of clinical change after six months of weekly DBT sessions. Using 10-fold cross-validation, the Rf model had significantly lower prediction error than lasso for the BPD severity variable, Mean Absolute Error (MAE) lasso - Rf = 1.55 (95% CI, 0.63-2.48) as well as for impulsivity, MAE lasso - Rf = 1.97 (95% CI, 0.57-3.35). According to Rf and the permutations method, 34/613 significant predictors for severity and 17/613 for impulsivity were identified. Using machine learning to identify the most important variables before starting DBT could be fundamental for personalized treatment and disease prognosis.
只有50%的边缘性人格障碍(BPD)患者对心理治疗有反应,如辩证行为疗法(DBT),通过识别临床变化的基线预测因素,这一比例可能会提高。我们使用机器学习来检测临床特征,这些特征可以预测DBT技能训练组后BPD严重程度和冲动性的改善/恶化情况。为了预测疾病严重程度,我们分析了125名BPD患者的数据,这些患者被分为17个DBT心理治疗组;对于冲动性,我们分析了89名患者,他们被分为12个DBT组。所有患者在基线时都使用广泛的自我报告测试进行评估;约70%的样本被随机选择,两个机器学习模型(套索和随机森林[Rf])使用10折交叉验证进行训练,并进行比较以预测治疗后的反应。在其余约30%的样本中评估模型的泛化能力。在基线时测量的DBT相关变量(即正念能力“不评判”或“无计划”冲动性)是每周进行DBT治疗六个月后临床变化的有力预测因素。使用10折交叉验证,对于BPD严重程度变量,Rf模型的预测误差显著低于套索,平均绝对误差(MAE)套索 - Rf = 1.55(95%置信区间,0.63 - 2.48),对于冲动性也是如此,MAE套索 - Rf = 1.97(95%置信区间,0.57 - 3.35)。根据Rf和排列方法,确定了34/613个严重程度的显著预测因素和17/613个冲动性的显著预测因素。在开始DBT之前使用机器学习识别最重要的变量对于个性化治疗和疾病预后可能至关重要。