Suppr超能文献

海马体启发式概率生成模型。

Hippocampal formation-inspired probabilistic generative model.

机构信息

Ritsumeikan Univervsity, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan.

The Whole Brain Architecture Initiative, Nishikoiwa 2-19-21, Edogawa-ku, Tokyo, 133-0057, Japan.

出版信息

Neural Netw. 2022 Jul;151:317-335. doi: 10.1016/j.neunet.2022.04.001. Epub 2022 Apr 8.

Abstract

In building artificial intelligence (AI) agents, referring to how brains function in real environments can accelerate development by reducing the design space. In this study, we propose a probabilistic generative model (PGM) for navigation in uncertain environments by integrating the neuroscientific knowledge of hippocampal formation (HF) and the engineering knowledge in robotics and AI, namely, simultaneous localization and mapping (SLAM). We follow the approach of brain reference architecture (BRA) (Yamakawa, 2021) to compose the PGM and outline how to verify the model. To this end, we survey and discuss the relationship between the HF findings and SLAM models. The proposed hippocampal formation-inspired probabilistic generative model (HF-PGM) is designed to be highly consistent with the anatomical structure and functions of the HF. By referencing the brain, we elaborate on the importance of integration of egocentric/allocentric information from the entorhinal cortex to the hippocampus and the use of discrete-event queues.

摘要

在构建人工智能 (AI) 代理时,参考大脑在真实环境中的运作方式可以通过减少设计空间来加速开发。在这项研究中,我们通过整合海马体形成 (HF) 的神经科学知识和机器人学和 AI 中的工程知识,即同时定位和映射 (SLAM),提出了一种用于不确定环境导航的概率生成模型 (PGM)。我们遵循大脑参考体系结构 (BRA) (Yamakawa, 2021) 的方法来组合 PGM,并概述如何验证该模型。为此,我们调查并讨论了 HF 发现与 SLAM 模型之间的关系。所提出的受海马体启发的概率生成模型 (HF-PGM) 旨在与 HF 的解剖结构和功能高度一致。通过参考大脑,我们详细阐述了从内嗅皮层到海马体的自我中心/非自我中心信息的整合以及使用离散事件队列的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验