Ramírez Varela Andrea, Moreno López Sergio, Contreras-Arrieta Sandra, Tamayo-Cabeza Guillermo, Restrepo-Restrepo Silvia, Sarmiento-Barbieri Ignacio, Caballero-Díaz Yuldor, Jorge Hernandez-Florez Luis, Mario González John, Salas-Zapata Leonardo, Laajaj Rachid, Buitrago-Gutierrez Giancarlo, de la Hoz-Restrepo Fernando, Vives Florez Martha, Osorio Elkin, Sofía Ríos-Oliveros Diana, Behrentz Eduardo
Universidad de los Andes, Bogotá, Colombia.
Secretaría Distrital de Salud de Bogotá, Bogotá, Colombia.
Prev Med Rep. 2022 Jun;27:101798. doi: 10.1016/j.pmedr.2022.101798. Epub 2022 Apr 20.
Symptoms-based models for predicting SARS-CoV-2 infection may improve clinical decision-making and be an alternative to resource allocation in under-resourced settings. In this study we aimed to test a model based on symptoms to predict a positive test result for SARS-CoV-2 infection during the COVID-19 pandemic using logistic regression and a machine-learning approach, in Bogotá, Colombia. Participants from the CoVIDA project were included. A logistic regression using the model was chosen based on biological plausibility and the Akaike Information criterion. Also, we performed an analysis using machine learning with random forest, support vector machine, and extreme gradient boosting. The study included 58,577 participants with a positivity rate of 5.7%. The logistic regression showed that anosmia ( = 7.76, 95% CI [6.19, 9.73]), fever ( = 4.29, 95% CI [3.07, 6.02]), headache ( = 3.29, 95% CI [1.78, 6.07]), dry cough ( = 2.96, 95% CI [2.44, 3.58]), and fatigue ( = 1.93, 95% CI [1.57, 2.93]) were independently associated with SARS-CoV-2 infection. Our final model had an area under the curve of 0.73. The symptoms-based model correctly identified over 85% of participants. This model can be used to prioritize resource allocation related to COVID-19 diagnosis, to decide on early isolation, and contact-tracing strategies in individuals with a high probability of infection before receiving a confirmatory test result. This strategy has public health and clinical decision-making significance in low- and middle-income settings like Latin America.
基于症状预测新型冠状病毒2感染的模型可能会改善临床决策,并且在资源不足的环境中可作为资源分配的一种替代方法。在本研究中,我们旨在使用逻辑回归和机器学习方法,在哥伦比亚波哥大测试一个基于症状的模型,以预测2019冠状病毒病大流行期间新型冠状病毒2感染检测呈阳性的结果。纳入了来自CoVIDA项目的参与者。基于生物学合理性和赤池信息准则选择使用该模型的逻辑回归。此外,我们使用随机森林、支持向量机和极端梯度提升进行了机器学习分析。该研究纳入了58577名参与者,阳性率为5.7%。逻辑回归显示,嗅觉丧失(β = 7.76,95%置信区间[6.19,9.73])、发热(β = 4.29,95%置信区间[3.07,6.02])、头痛(β = 3.29,95%置信区间[1.78,6.07])、干咳(β = 2.96,95%置信区间[2.44,3.58])和疲劳(β = 1.93,95%置信区间[1.57,2.93])与新型冠状病毒2感染独立相关。我们的最终模型曲线下面积为0.73。基于症状的模型正确识别了超过85%的参与者。该模型可用于确定与2019冠状病毒病诊断相关的资源分配优先级,在获得确诊检测结果之前,对感染可能性高 的个体做出早期隔离和接触者追踪策略的决策。该策略在拉丁美洲等低收入和中等收入环境中具有公共卫生和临床决策意义。