Institute for New Energy Materials & Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.
School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China.
Chemphyschem. 2022 Jun 3;23(11):e202200149. doi: 10.1002/cphc.202200149. Epub 2022 Apr 26.
Converting N to NH is an essential reaction but remains a great challenge for industries. Developing more efficient catalysts for N reduction under mild conditions is of vital importance. In this work, double transition metal atoms (TM=Mo, W, Nb and Ru) anchored on graphdiyne monolayer (TM @GDY) as electrocatalysts are designed, and the corresponding reaction mechanisms of N electroreduction are systematically investigated by means of first-principles calculations. The results show that the double TM atoms can be strongly anchored on the acetylenic ring of GDY and Ru @GDY exhibits the highest catalytic activity for NRR with a maximum free energy change of 0.55 eV through the enzymatic pathway. The significant charge transfer between the substrate and the adsorbed N molecule is responsible for the superior catalytic activity. This work could provide a new approach for the rational design of double-atom catalysts for NRR and other related reduction reactions.
将 N 转化为 NH 是一个重要的反应,但对工业界来说仍然是一个巨大的挑战。开发在温和条件下更高效的氮还原催化剂至关重要。在这项工作中,设计了双过渡金属原子(TM=Mo、W、Nb 和 Ru)锚定在石墨炔单层(TM@GDY)上作为电催化剂,并通过第一性原理计算系统研究了相应的氮电还原反应机制。结果表明,双 TM 原子可以被强烈地锚定在 GDY 的炔烃环上,Ru@GDY 通过酶途径表现出最高的 NRR 催化活性,最大自由能变化为 0.55 eV。底物和吸附的 N 分子之间的显著电荷转移是其具有优越催化活性的原因。这项工作为 NRR 和其他相关还原反应的双原子催化剂的合理设计提供了一种新方法。