Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Am J Hum Genet. 2022 Jun 2;109(6):989-1006. doi: 10.1016/j.ajhg.2022.04.003. Epub 2022 Apr 26.
Most disease-associated genetic variants are pleiotropic, affecting multiple genetically correlated traits. Their pleiotropic associations can be mechanistically informative: if many variants have similar patterns of association, they may act via similar pleiotropic mechanisms, forming a shared component of heritability. We developed pleiotropic decomposition regression (PDR) to identify shared components and their underlying genetic variants. We validated PDR on simulated data and identified limitations of existing methods in recovering the true components. We applied PDR to three clusters of five to six traits genetically correlated with coronary artery disease (CAD), asthma, and type II diabetes (T2D), producing biologically interpretable components. For CAD, PDR identified components related to BMI, hypertension, and cholesterol, and it clarified the relationship among these highly correlated risk factors. We assigned variants to components, calculated their posterior-mean effect sizes, and performed out-of-sample validation. Our posterior-mean effect sizes pool statistical power across traits and substantially boost the correlation (r) between true and estimated effect sizes (compared with the original summary statistics) by 94% and 70% for asthma and T2D out of sample, respectively, and by a predicted 300% for CAD.
大多数与疾病相关的遗传变异是多效的,会影响多个遗传相关的特征。它们的多效关联可能具有机制信息:如果许多变异具有相似的关联模式,它们可能通过相似的多效机制起作用,形成遗传可变性的共同组成部分。我们开发了多效分解回归(PDR)来识别共同组件及其潜在的遗传变异。我们在模拟数据上验证了 PDR,并确定了现有方法在恢复真实组件方面的局限性。我们将 PDR 应用于与冠状动脉疾病(CAD)、哮喘和 2 型糖尿病(T2D)相关的五个至六个特征的三个聚类中,产生了具有生物学意义的可解释成分。对于 CAD,PDR 确定了与 BMI、高血压和胆固醇相关的成分,并阐明了这些高度相关的风险因素之间的关系。我们将变体分配给组件,计算了它们的后验平均效应大小,并进行了样本外验证。我们的后验平均效应大小在特征之间汇集了统计能力,并将哮喘和 T2D 的真实和估计效应大小之间的相关性(r)分别提高了 94%和 70%,而对于 CAD,则预测提高了 300%。