Demir Sinan O, Culha Utku, Karacakol Alp C, Pena-Francesch Abdon, Trimpe Sebastian, Sitti Metin
Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.
Stuttgart Center for Simulation Science (SC SimTech), University of Stuttgart, Stuttgart, Germany.
Int J Rob Res. 2021 Dec 1;40(12-14):1331-1351. doi: 10.1177/02783649211021869. Epub 2021 Jun 16.
Untethered small-scale soft robots have promising applications in minimally invasive surgery, targeted drug delivery, and bioengineering applications as they can directly and non-invasively access confined and hard-to-reach spaces in the human body. For such potential biomedical applications, the adaptivity of the robot control is essential to ensure the continuity of the operations, as task environment conditions show dynamic variations that can alter the robot's motion and task performance. The applicability of the conventional modeling and control methods is further limited for soft robots at the small-scale owing to their kinematics with virtually infinite degrees of freedom, inherent stochastic variability during fabrication, and changing dynamics during real-world interactions. To address the controller adaptation challenge to dynamically changing task environments, we propose using a probabilistic learning approach for a millimeter-scale magnetic walking soft robot using Bayesian optimization (BO) and Gaussian processes (GPs). Our approach provides a data-efficient learning scheme by finding the gait controller parameters while optimizing the stride length of the walking soft millirobot using a small number of physical experiments. To demonstrate the controller adaptation, we test the walking gait of the robot in task environments with different surface adhesion and roughness, and medium viscosity, which aims to represent the possible conditions for future robotic tasks inside the human body. We further utilize the transfer of the learned GP parameters among different task spaces and robots and compare their efficacy on the improvement of data-efficient controller learning.
无系绳小型软机器人在微创手术、靶向给药和生物工程应用中具有广阔的应用前景,因为它们可以直接且无创地进入人体中受限且难以到达的空间。对于此类潜在的生物医学应用,机器人控制的适应性对于确保操作的连续性至关重要,因为任务环境条件会动态变化,从而改变机器人的运动和任务性能。由于软机器人在小尺度下具有几乎无限的运动自由度、制造过程中固有的随机变异性以及实际交互过程中不断变化的动力学特性,传统建模和控制方法的适用性进一步受限。为了应对动态变化的任务环境带来的控制器适应性挑战,我们提出使用一种概率学习方法,用于毫米级磁性行走软机器人,该方法结合了贝叶斯优化(BO)和高斯过程(GPs)。我们的方法通过在使用少量物理实验优化行走软微型机器人的步长的同时找到步态控制器参数,提供了一种数据高效的学习方案。为了展示控制器的适应性,我们在具有不同表面附着力、粗糙度和中等粘度的任务环境中测试机器人的行走步态,这些环境旨在代表未来人体内部机器人任务的可能条件。我们还进一步利用在不同任务空间和机器人之间转移学习到的高斯过程参数,并比较它们在改进数据高效控制器学习方面的效果。