Eslamibidgoli Mohammad J, Tipp Fabian P, Jitsev Jenia, Jankovic Jasna, Eikerling Michael H, Malek Kourosh
Theory and Computation of Energy Materials (IEK-13), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH 52425 Jülich Germany
Department of Chemistry, University of Cologne Greinstr. 4-6 50939 Cologne Germany.
RSC Adv. 2021 Sep 28;11(51):32126-32134. doi: 10.1039/d1ra05324h. eCollection 2021 Sep 27.
The performance of polymer electrolyte fuel cells decisively depends on the structure and processes in membrane electrode assemblies and their components, particularly the catalyst layers. The structural building blocks of catalyst layers are formed during the processing and application of catalyst inks. Accelerating the structural characterization at the ink stage is thus crucial to expedite further advances in catalyst layer design and fabrication. In this context, deep learning algorithms based on deep convolutional neural networks (ConvNets) can automate the processing of the complex and multi-scale structural features of ink imaging data. This article presents the first application of ConvNets for the high throughput screening of transmission electron microscopy images at the ink stage. Results indicate the importance of model pre-training and data augmentation that works on multiple scales in training robust and accurate classification pipelines.
聚合物电解质燃料电池的性能决定性地取决于膜电极组件及其部件(尤其是催化层)中的结构和过程。催化层的结构组成部分是在催化剂墨水的加工和应用过程中形成的。因此,在墨水阶段加快结构表征对于加速催化层设计和制造的进一步进展至关重要。在这种情况下,基于深度卷积神经网络(ConvNets)的深度学习算法可以自动处理墨水成像数据的复杂多尺度结构特征。本文展示了ConvNets在墨水阶段对透射电子显微镜图像进行高通量筛选的首次应用。结果表明了模型预训练和在多个尺度上进行数据增强对于训练强大而准确的分类管道的重要性。