Javed Mohsin, Qamar Muhammad Azam, Shahid Sammia, Alsaab Hashem O, Asif Salma
Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
Department of Pharmaceutics and Pharmaceutical Technology, Taif University P. O. Box 11099 Taif 21944 Saudi Arabia.
RSC Adv. 2021 Nov 19;11(59):37254-37267. doi: 10.1039/d1ra07203j. eCollection 2021 Nov 17.
The photocatalytic activity of photocatalysts is severely hampered by limited visible light harvesting and unwanted fast recombination of photogenerated e and h. In the current study, the photocatalytic efficiency of Cu-ZnO/S-g-CN (CZS) nanocomposites was investigated against MB dye. The composite materials were designed chemical co-precipitation method and characterised by important analytical techniques. Distinctive heterojunctions developed between S-g-CN and Cu-ZnO in the CZS composite were revealed by TEM. The synthesized composites exhibit a huge number of active sites, a large surface area, a smaller size and better visible light absorption. The considerable enhancement in the photocatalytic activity of CZS nanocomposites might be accredited to the decay in the e-h pair recombination rate and a red shift in the visible region, as observed by PL and optical analysis, respectively. Furthermore, the metal (Cu) doping into the S-g-CN/ZnO matrix created exemplary interfaces between ZnO and S-g-CN, and maximized the photocatalytic activity of CZS nanocomposites. In particular, CZS nanocomposites synthesized by integrating 25% S-g-CN with 4% Cu-ZnO (CZS-25 NCs) exhibited the 100% photocatalytic degradation of MB in 60 minutes under sunlight irradiation. After six cycles, the photocatalytic stability of CZS-25 NCs was excellent. Likewise, a plausible MB degradation mechanism is proposed over CZS-25 NCs based on photoluminescence and reactive species scavenger test observation. The current research supports the design of novel composites for the photocatalytic disintegration of organic contaminants.
光催化剂的光催化活性受到可见光捕获能力有限以及光生电子和空穴快速复合的严重阻碍。在本研究中,研究了Cu-ZnO/S-g-CN(CZS)纳米复合材料对亚甲基蓝(MB)染料的光催化效率。通过化学共沉淀法制备了复合材料,并采用重要的分析技术对其进行了表征。透射电子显微镜(TEM)显示,CZS复合材料中S-g-CN和Cu-ZnO之间形成了独特的异质结。合成的复合材料具有大量活性位点、大表面积、较小尺寸和更好的可见光吸收性能。如分别通过光致发光(PL)和光学分析所观察到的,CZS纳米复合材料光催化活性的显著提高可能归因于电子-空穴对复合率的降低和可见光区域的红移。此外,向S-g-CN/ZnO基体中掺杂金属(Cu)在ZnO和S-g-CN之间形成了理想的界面,并使CZS纳米复合材料的光催化活性最大化。特别是,通过将25%的S-g-CN与4%的Cu-ZnO(CZS-25 NCs)复合而成的CZS纳米复合材料在阳光照射下60分钟内实现了对MB的100%光催化降解。经过六个循环后,CZS-25 NCs的光催化稳定性极佳。同样,基于光致发光和活性物种清除剂测试观察结果,提出了一种在CZS-25 NCs上可能的MB降解机制。当前的研究支持了用于光催化分解有机污染物的新型复合材料的设计。