Suppr超能文献

通过融合卷积和变压器网络实现医学图像中的语义分割

Semantic segmentation in medical images through transfused convolution and transformer networks.

作者信息

Dhamija Tashvik, Gupta Anunay, Gupta Shreyansh, Katarya Rahul, Singh Ghanshyam

机构信息

Department of Electronics and Communication Engineering, Delhi Technological University, New Delhi, India.

Department of Electrical Engineering, Delhi Technological University, New Delhi, India.

出版信息

Appl Intell (Dordr). 2023;53(1):1132-1148. doi: 10.1007/s10489-022-03642-w. Epub 2022 Apr 25.

Abstract

Recent decades have witnessed rapid development in the field of medical image segmentation. Deep learning-based fully convolution neural networks have played a significant role in the development of automated medical image segmentation models. Though immensely effective, such networks only take into account localized features and are unable to capitalize on the global context of medical image. In this paper, two deep learning based models have been proposed namely USegTransformer-P and USegTransformer-S. The proposed models capitalize upon local features and global features by amalgamating the transformer-based encoders and convolution-based encoders to segment medical images with high precision. Both the proposed models deliver promising results, performing better than the previous state of the art models in various segmentation tasks such as Brain tumor, Lung nodules, Skin lesion and Nuclei segmentation. The authors believe that the ability of USegTransformer-P and USegTransformer-S to perform segmentation with high precision could remarkably benefit medical practitioners and radiologists around the world.

摘要

近几十年来,医学图像分割领域发展迅速。基于深度学习的全卷积神经网络在自动化医学图像分割模型的发展中发挥了重要作用。尽管这些网络非常有效,但它们只考虑局部特征,无法利用医学图像的全局上下文信息。在本文中,提出了两种基于深度学习的模型,即USegTransformer-P和USegTransformer-S。所提出的模型通过融合基于Transformer的编码器和基于卷积的编码器来利用局部特征和全局特征,从而高精度地分割医学图像。这两种模型都取得了有希望的结果,在各种分割任务中,如脑肿瘤、肺结节、皮肤病变和细胞核分割,其表现优于先前的最先进模型。作者认为,USegTransformer-P和USegTransformer-S进行高精度分割的能力可以显著造福世界各地的医学从业者和放射科医生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10e4/9035506/059297e8c0f1/10489_2022_3642_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验