Suppr超能文献

基于动态证据融合的可信多视图分类

Trusted Multi-View Classification With Dynamic Evidential Fusion.

作者信息

Han Zongbo, Zhang Changqing, Fu Huazhu, Zhou Joey Tianyi

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Feb;45(2):2551-2566. doi: 10.1109/TPAMI.2022.3171983. Epub 2023 Jan 6.

Abstract

Existing multi-view classification algorithms focus on promoting accuracy by exploiting different views, typically integrating them into common representations for follow-up tasks. Although effective, it is also crucial to ensure the reliability of both the multi-view integration and the final decision, especially for noisy, corrupted and out-of-distribution data. Dynamically assessing the trustworthiness of each view for different samples could provide reliable integration. This can be achieved through uncertainty estimation. With this in mind, we propose a novel multi-view classification algorithm, termed trusted multi-view classification (TMC), providing a new paradigm for multi-view learning by dynamically integrating different views at an evidence level. The proposed TMC can promote classification reliability by considering evidence from each view. Specifically, we introduce the variational Dirichlet to characterize the distribution of the class probabilities, parameterized with evidence from different views and integrated with the Dempster-Shafer theory. The unified learning framework induces accurate uncertainty and accordingly endows the model with both reliability and robustness against possible noise or corruption. Both theoretical and experimental results validate the effectiveness of the proposed model in accuracy, robustness and trustworthiness.

摘要

现有的多视图分类算法专注于通过利用不同视图来提高准确性,通常将它们整合到通用表示中以用于后续任务。尽管有效,但确保多视图整合和最终决策的可靠性也至关重要,特别是对于有噪声、损坏和分布外的数据。动态评估每个视图对于不同样本的可信度可以提供可靠的整合。这可以通过不确定性估计来实现。考虑到这一点,我们提出了一种新颖的多视图分类算法,称为可信多视图分类(TMC),通过在证据层面动态整合不同视图,为多视图学习提供了一种新范式。所提出的TMC可以通过考虑来自每个视图的证据来提高分类可靠性。具体来说,我们引入变分狄利克雷来表征类概率的分布,用来自不同视图的证据进行参数化,并与邓普斯特 - 谢弗理论相结合。统一的学习框架可诱导出准确的不确定性,并相应地赋予模型针对可能的噪声或损坏的可靠性和鲁棒性。理论和实验结果均验证了所提出模型在准确性、鲁棒性和可信度方面的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验