Suppr超能文献

在砷化铟上进行氧化铪原子层沉积期间的氧迁移

Oxygen relocation during HfO ALD on InAs.

作者信息

D'Acunto Giulio, Kokkonen Esko, Shayesteh Payam, Boix Virginia, Rehman Foqia, Mosahebfard Zohreh, Lind Erik, Schnadt Joachim, Timm Rainer

机构信息

Division of Synchrotron Radiation Research, Department of Physics, Lund University, 22100 Lund, Sweden.

NanoLund Center for Nanoscience, Lund University, 22100 Lund, Sweden.

出版信息

Faraday Discuss. 2022 Aug 25;236(0):71-85. doi: 10.1039/d1fd00116g.

Abstract

Atomic layer deposition (ALD) is one of the backbones for today's electronic device fabrication. A critical property of ALD is the layer-by-layer growth, which gives rise to the atomic-scale accuracy. However, the growth rate - or growth per cycle - can differ significantly depending on the type of system, molecules used, and several other experimental parameters. Typically, ALD growth rates are constant in subsequent ALD cycles, making ALD an outstanding deposition technique. However, contrary to this steady-state - when the ALD process can be entirely decoupled from the substrate on which the material is grown - the deposition's early stage does not appear to follow the same kinetics, chemistry, and growth rate. Instead, it is to a large extent determined by the surface composition of the substrate. Here, we present evidence of oxygen relocation from the substrate-based oxide, either the thermal or native oxide of InAs, to the overlayer of HfO in the initial ALD phase. This phenomenon enables control of the thickness of the initial ALD layer by controlling the surface conditions of the substrate prior to ALD. On the other hand, we observe a complete removal of the native oxide from InAs already during the first ALD half-cycle, even if the thickness of the oxide layer exceeds one monolayer, together with a self-limiting thickness of the ALD layer of a maximum of one monolayer of HfO. These observations not only highlight several limitations of the widely used ligand exchange model, but they also give promise for a better control of the industrially important self-cleaning effect of III-V semiconductors, which is crucial for future generation high-speed MOS.

摘要

原子层沉积(ALD)是当今电子器件制造的支柱技术之一。ALD的一个关键特性是逐层生长,这使得原子尺度的精度得以实现。然而,生长速率——即每循环的生长量——会因系统类型、所用分子以及其他几个实验参数而有显著差异。通常,在后续的ALD循环中,ALD生长速率是恒定的,这使得ALD成为一种出色的沉积技术。然而,与这种稳态情况相反——此时ALD过程可以完全与生长材料的衬底解耦——沉积的早期阶段似乎并不遵循相同的动力学、化学过程和生长速率。相反,它在很大程度上由衬底的表面组成决定。在此,我们展示了在初始ALD阶段,氧从基于衬底的氧化物(InAs的热氧化物或本征氧化物)迁移到HfO覆盖层的证据。这种现象使得通过控制ALD之前衬底的表面条件来控制初始ALD层的厚度成为可能。另一方面,我们观察到即使氧化物层厚度超过一个单层,在第一个ALD半循环期间InAs的本征氧化物就已被完全去除,同时ALD层的自限厚度最大为一个单层的HfO。这些观察结果不仅突出了广泛使用的配体交换模型的几个局限性,而且它们也为更好地控制III - V族半导体在工业上重要的自清洁效应带来了希望,这对于下一代高速MOS至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验