Suppr超能文献

华法林敏感性与危重症患者的住院死亡率增加相关。

Warfarin sensitivity is associated with increased hospital mortality in critically Ill patients.

机构信息

Department of Medicine, St Luke's University Health Network, Easton, PA, United States of America.

Department of Computer Science, East Carolina University College of Engineering and Technology, Greenville, NC, United States of America.

出版信息

PLoS One. 2022 May 5;17(5):e0267966. doi: 10.1371/journal.pone.0267966. eCollection 2022.

Abstract

BACKGROUND

Warfarin is a widely used anticoagulant with a narrow therapeutic index and large interpatient variability in the therapeutic dose. Warfarin sensitivity has been reported to be associated with increased incidence of international normalized ratio (INR) > 5. However, whether warfarin sensitivity is a risk factor for adverse outcomes in critically ill patients remains unknown. In the present study, we aimed to evaluate the utility of different machine learning algorithms for the prediction of warfarin sensitivity and to determine the impact of warfarin sensitivity on outcomes in critically ill patients.

METHODS

Nine different machine learning algorithms for the prediction of warfarin sensitivity were tested in the International Warfarin Pharmacogenetic Consortium cohort and Easton cohort. Furthermore, a total of 7,647 critically ill patients was analyzed for warfarin sensitivity on in-hospital mortality by multivariable regression. Covariates that potentially confound the association were further adjusted using propensity score matching or inverse probability of treatment weighting.

RESULTS

We found that logistic regression (AUC = 0.879, 95% CI: 0.834-0.924) was indistinguishable from support vector machine with a linear kernel, neural network, AdaBoost and light gradient boosting trees, and significantly outperformed all the other machine learning algorithms. Furthermore, we found that warfarin sensitivity predicted by the logistic regression model was significantly associated with worse in-hospital mortality in critically ill patients with an odds ratio (OR) of 1.33 (95% CI, 1.01-1.77).

CONCLUSIONS

Our data suggest that the logistic regression model is the best model for the prediction of warfarin sensitivity clinically and that warfarin sensitivity is likely to be a risk factor for adverse outcomes in critically ill patients.

摘要

背景

华法林是一种广泛应用的抗凝药物,治疗指数较窄,治疗剂量的个体间差异较大。据报道,华法林敏感性与国际标准化比值(INR)>5 的发生率增加有关。然而,华法林敏感性是否是危重症患者不良结局的危险因素尚不清楚。本研究旨在评估不同机器学习算法在预测华法林敏感性中的应用,并确定华法林敏感性对危重症患者结局的影响。

方法

在国际华法林药物基因组学联合会队列和伊斯顿队列中测试了 9 种不同的机器学习算法用于预测华法林敏感性。此外,通过多变量回归分析了 7647 例危重症患者的华法林敏感性与院内死亡率的关系。进一步使用倾向评分匹配或逆概率处理加权法调整可能混淆关联的协变量。

结果

我们发现逻辑回归(AUC=0.879,95%CI:0.834-0.924)与具有线性核的支持向量机、神经网络、AdaBoost 和轻梯度提升树的表现相当,明显优于所有其他机器学习算法。此外,我们发现逻辑回归模型预测的华法林敏感性与危重症患者院内死亡率显著相关,优势比(OR)为 1.33(95%CI,1.01-1.77)。

结论

我们的数据表明,逻辑回归模型是预测华法林敏感性的最佳模型,华法林敏感性可能是危重症患者不良结局的危险因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f91f/9070894/9290cc4d8a48/pone.0267966.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验