Suppr超能文献

通过深度学习估计α、β和γ多样性

Estimating Alpha, Beta, and Gamma Diversity Through Deep Learning.

作者信息

Andermann Tobias, Antonelli Alexandre, Barrett Russell L, Silvestro Daniele

机构信息

Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.

Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden.

出版信息

Front Plant Sci. 2022 Apr 19;13:839407. doi: 10.3389/fpls.2022.839407. eCollection 2022.

Abstract

The reliable mapping of species richness is a crucial step for the identification of areas of high conservation priority, alongside other value and threat considerations. This is commonly done by overlapping range maps of individual species, which requires dense availability of occurrence data or relies on assumptions about the presence of species in unsampled areas deemed suitable by environmental niche models. Here, we present a deep learning approach that directly estimates species richness, skipping the step of estimating individual species ranges. We train a neural network model based on species lists from inventory plots, which provide ground truth data for supervised machine learning. The model learns to predict species richness based on spatially associated variables, including climatic and geographic predictors, as well as counts of available species records from online databases. We assess the empirical utility of our approach by producing independently verifiable maps of alpha, beta, and gamma plant diversity at high spatial resolutions for Australia, a continent with highly heterogeneous diversity patterns. Our deep learning framework provides a powerful and flexible new approach for estimating biodiversity patterns, constituting a step forward toward automated biodiversity assessments.

摘要

物种丰富度的可靠映射是确定高度优先保护区域的关键步骤,同时还要考虑其他价值和威胁因素。这通常是通过叠加单个物种的分布范围图来完成的,这需要密集的出现数据,或者依赖于环境生态位模型认为适合的未采样区域中物种存在的假设。在这里,我们提出了一种深度学习方法,该方法直接估计物种丰富度,跳过了估计单个物种分布范围的步骤。我们基于清查样地的物种列表训练一个神经网络模型,这些样地为监督机器学习提供了地面真值数据。该模型学习根据空间相关变量预测物种丰富度,这些变量包括气候和地理预测因子,以及来自在线数据库的可用物种记录数量。我们通过为澳大利亚(一个具有高度异质多样性格局的大陆)制作高空间分辨率的、可独立验证的α、β和γ植物多样性地图,来评估我们方法的实际效用。我们的深度学习框架为估计生物多样性模式提供了一种强大且灵活的新方法,朝着自动化生物多样性评估迈出了一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e19/9062518/754b6fee3093/fpls-13-839407-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验