Suppr超能文献

双佐剂球形核酸在癌症免疫治疗中最大化 TLR9 激活。

Maximizing TLR9 Activation in Cancer Immunotherapy with Dual-Adjuvanted Spherical Nucleic Acids.

机构信息

Departments of Chemistry and Chemical Biology, Chemical Engineering, and Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States.

Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, United States.

出版信息

Nano Lett. 2022 May 25;22(10):4058-4066. doi: 10.1021/acs.nanolett.2c00723. Epub 2022 May 6.

Abstract

Nucleic-acid-based immune adjuvants have been extensively investigated for the design of cancer vaccines. However, nucleic acids often require the assistance of a carrier system to improve cellular uptake. Yet, such systems are prone to carrier-associated adaptive immunity, leading to difficulties in a multidose treatment regimen. Here, we demonstrate that a spherical nucleic acid (SNA)-based self-adjuvanting system consisting of phosphodiester oligonucleotides and vitamin E can function as a potent anticancer vaccine without a carrier. The two functional modules work synergistically, serving as each other's delivery vector to enhance toll-like receptor 9 activation. The vaccine rapidly enters cells carrying OVA model antigens, which enables efficient activation of adaptive immunity and . In OVA-expressing tumor allograft models, both prophylactic and therapeutic vaccinations significantly retard tumor growth and prolong animal survival. Furthermore, the vaccinations were also able to reduce lung metastasis in a B16F10-OVA model.

摘要

核酸免疫佐剂在癌症疫苗的设计中得到了广泛的研究。然而,核酸通常需要载体系统的辅助来提高细胞摄取率。然而,这样的系统容易产生载体相关的适应性免疫,导致多剂量治疗方案的困难。在这里,我们证明了由磷酸二酯寡核苷酸和维生素 E 组成的基于球形核酸(SNA)的自佐剂系统可以作为一种有效的无载体抗癌疫苗。这两个功能模块协同工作,互为载体,以增强 Toll 样受体 9 的激活。该疫苗迅速进入携带 OVA 模型抗原的细胞,从而有效地激活适应性免疫和 。在表达 OVA 的肿瘤移植模型中,预防性和治疗性疫苗接种均显著延缓肿瘤生长并延长动物存活期。此外,该疫苗还能够减少 B16F10-OVA 模型中的肺转移。

相似文献

10
Use of adjuvants for immunotherapy.免疫治疗佐剂的应用。
Hum Vaccin Immunother. 2017 Aug 3;13(8):1774-1777. doi: 10.1080/21645515.2017.1321725. Epub 2017 Jun 12.

引用本文的文献

3
In Vivo Interactions of Nucleic Acid Nanostructures With Cells.核酸纳米结构与细胞的体内相互作用
Adv Mater. 2025 Jan;37(2):e2314232. doi: 10.1002/adma.202314232. Epub 2024 Sep 12.

本文引用的文献

1
Emerging vaccine nanotechnology: From defense against infection to sniping cancer.新兴疫苗纳米技术:从抗感染到狙击癌症
Acta Pharm Sin B. 2022 May;12(5):2206-2223. doi: 10.1016/j.apsb.2021.12.021. Epub 2022 Jan 4.
3
Proton-driven transformable nanovaccine for cancer immunotherapy.质子驱动可变形纳米疫苗用于癌症免疫治疗。
Nat Nanotechnol. 2020 Dec;15(12):1053-1064. doi: 10.1038/s41565-020-00782-3. Epub 2020 Oct 26.
4
Trial watch: STING agonists in cancer therapy.试验观察:癌症治疗中的STING激动剂
Oncoimmunology. 2020 Jun 16;9(1):1777624. doi: 10.1080/2162402X.2020.1777624.
5
A DNA nanodevice-based vaccine for cancer immunotherapy.基于 DNA 纳米器件的癌症免疫疗法疫苗。
Nat Mater. 2021 Mar;20(3):421-430. doi: 10.1038/s41563-020-0793-6. Epub 2020 Sep 7.
6
Emerging Adjuvants for Cancer Immunotherapy.癌症免疫治疗的新型佐剂
Front Chem. 2020 Jul 30;8:601. doi: 10.3389/fchem.2020.00601. eCollection 2020.
8
Nucleic acid-based drug delivery strategies.基于核酸的药物递送策略。
J Control Release. 2020 Jul 10;323:240-252. doi: 10.1016/j.jconrel.2020.03.040. Epub 2020 Apr 6.
9
RIG-I-like receptors: their regulation and roles in RNA sensing.RIG-I 样受体:它们在 RNA 感应中的调控和作用。
Nat Rev Immunol. 2020 Sep;20(9):537-551. doi: 10.1038/s41577-020-0288-3. Epub 2020 Mar 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验