Suppr超能文献

基于长程连续颅内 EEG 记录的高频活动(80-170 Hz)进行癫痫发作预测。

Seizure Forecasting by High-Frequency Activity (80-170 Hz) in Long-term Continuous Intracranial EEG Recordings.

机构信息

From the Department of Biomedical Engineering (Z.C., A.N.B., M.J.C., D.B.G.) and Graeme Clark Institute for Biomedical Engineering (M.J.C., D.B.G.), University of Melbourne, Parkville; Department of Medicine (Z.C., M.I.M., M.J.C., D.B.G.), St Vincent's Hospital; and Seer Medical (M.I.M.), Melbourne, VIC, Australia.

出版信息

Neurology. 2022 Jul 25;99(4):e364-e375. doi: 10.1212/WNL.0000000000200348.

Abstract

BACKGROUND AND OBJECTIVES

Reliable seizure forecasting has important implications in epilepsy treatment and improving the quality of lives for people with epilepsy. High-frequency activity (HFA) is a biomarker that has received significant attention over the past 2 decades, but its predictive value in seizure forecasting remains uncertain. This work aimed to determine the utility of HFA in seizure forecasting.

METHODS

We used seizure data and HFA (80-170 Hz) data obtained from long-term, continuous intracranial EEG recordings of patients with drug-resistant epilepsy. Instantaneous rates and phases of HFA cycles were used as features for seizure forecasting. Seizure forecasts based on each individual HFA feature, and with the use of a combined approach, were generated pseudo-prospectively (causally). To compute the instantaneous phases for pseudo-prospective forecasting, real-time phase estimation based on an autoregressive model was used. Features were combined with a weighted average approach. The performance of seizure forecasting was primarily evaluated by the area under the curve (AUC).

RESULTS

Of 15 studied patients (median recording duration 557 days, median seizures 151), 12 patients with >10 seizures after 100 recording days were included in the pseudo-prospective analysis. The presented real-time phase estimation is feasible and can causally estimate the instantaneous phases of HFA cycles with high accuracy. Pseudo-prospective seizure forecasting based on HFA rates and phases performed significantly better than chance in 11 of 12 patients, although there were patient-specific differences. Combining rate and phase information improved forecasting performance compared to using either feature alone. The combined forecast using the best-performing channel yielded a median AUC of 0.70, a median sensitivity of 0.57, and a median specificity of 0.77.

DISCUSSION

These findings show that HFA could be useful for seizure forecasting and represent proof of concept for using prior information of patient-specific relationships between HFA and seizures in pseudo-prospective forecasting. Future seizure forecasting algorithms might benefit from the inclusion of HFA, and the real-time phase estimation approach can be extended to other biomarkers.

CLASSIFICATION OF EVIDENCE

This study provides Class IV evidence that HFA (80-170 Hz) in long-term continuous intracranial EEG can be useful to forecast seizures in patients with refractory epilepsy.

摘要

背景与目的

可靠的癫痫发作预测在癫痫治疗和提高癫痫患者生活质量方面具有重要意义。高频活动(HFA)是过去 20 年来备受关注的生物标志物,但它在癫痫发作预测中的预测价值仍不确定。本研究旨在确定 HFA 在癫痫发作预测中的应用价值。

方法

我们使用了来自耐药性癫痫患者长期连续颅内 EEG 记录中获得的癫痫发作数据和 HFA(80-170 Hz)数据。HFA 周期的瞬时率和相位被用作癫痫发作预测的特征。基于每个单独的 HFA 特征和使用联合方法生成了癫痫发作的前瞻性预测(因果预测)。为了计算前瞻性预测的瞬时相位,使用基于自回归模型的实时相位估计。特征采用加权平均方法进行组合。癫痫发作预测的性能主要通过曲线下面积(AUC)进行评估。

结果

在 15 名研究患者中(中位记录时间 557 天,中位发作 151 次),12 名在 100 天记录后有>10 次发作的患者被纳入前瞻性分析。所提出的实时相位估计是可行的,可以以高精度因果估计 HFA 周期的瞬时相位。基于 HFA 率和相位的前瞻性癫痫发作预测在 12 名患者中的 11 名中表现明显优于随机,尽管存在患者特异性差异。与单独使用任何一种特征相比,组合使用率和相位信息可提高预测性能。使用性能最佳通道的组合预测得到的中位 AUC 为 0.70,中位敏感性为 0.57,中位特异性为 0.77。

讨论

这些发现表明 HFA 可能对癫痫发作预测有用,并为在前瞻性预测中使用患者特定的 HFA 与癫痫发作之间关系的先验信息提供了概念验证。未来的癫痫发作预测算法可能受益于 HFA 的纳入,并且实时相位估计方法可以扩展到其他生物标志物。

证据分类

本研究提供了 IV 级证据,表明长程连续颅内 EEG 中的 HFA(80-170 Hz)可用于预测耐药性癫痫患者的癫痫发作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验