Southern Medical University, 1838 shatai Road, Baiyun District, Guangzhou, 510515, Guangdong province, China.
Department of Medical Imaging, Longgang Central Hospital of Shenzhen, 6082 Longgang Avenue, Longgang District, Shenzhen, 518116, Guangdong province, China.
BMC Musculoskelet Disord. 2022 May 6;23(1):426. doi: 10.1186/s12891-022-05378-7.
Notch volume is associated with anterior cruciate ligament (ACL) injury. Manual tracking of intercondylar notch on MR images is time-consuming and laborious. Deep learning has become a powerful tool for processing medical images. This study aims to develop an MRI segmentation model of intercondylar fossa based on deep learning to automatically measure notch volume, and explore its correlation with ACL injury.
The MRI data of 363 subjects (311 males and 52 females) with ACL injuries incurred during non-contact sports and 232 subjects (147 males and 85 females) with intact ACL were retrospectively analyzed. Each layer of intercondylar fossa was manually traced by radiologists on axial MR images. Notch volume was then calculated. We constructed an automatic segmentation system based on the architecture of Res-UNet for intercondylar fossa and used dice similarity coefficient (DSC) to compare the performance of segmentation systems by different networks. Unpaired t-test was performed to determine differences in notch volume between ACL-injured and intact groups, and between males and females.
The DSCs of intercondylar fossa based on different networks were all more than 0.90, and Res-UNet showed the best performance. The notch volume was significantly lower in the ACL-injured group than in the control group (6.12 ± 1.34 cm vs. 6.95 ± 1.75 cm, P < 0.001). Females had lower notch volume than males (5.41 ± 1.30 cm vs. 6.76 ± 1.51 cm, P < 0.001). Males and females who had ACL injuries had smaller notch than those with intact ACL (p < 0.001 and p < 0.005). Men had larger notches than women, regardless of the ACL injuries (p < 0.001).
Using a deep neural network to segment intercondylar fossa automatically provides a technical support for the clinical prediction and prevention of ACL injury and re-injury after surgery.
Notch 体积与前交叉韧带(ACL)损伤有关。在 MR 图像上手动追踪髁间切迹既耗时又费力。深度学习已成为处理医学图像的强大工具。本研究旨在开发一种基于深度学习的髁间窝 MRI 分割模型,以自动测量 Notch 体积,并探讨其与 ACL 损伤的相关性。
回顾性分析了 363 例非接触性运动中 ACL 损伤患者(男性 311 例,女性 52 例)和 232 例 ACL 完整患者(男性 147 例,女性 85 例)的 MRI 数据。由放射科医生在轴位 MR 图像上手动追踪髁间窝的每一层,并计算 Notch 体积。我们构建了一个基于 Res-UNet 架构的自动分割系统,并使用 Dice 相似系数(DSC)比较了不同网络的分割系统的性能。使用独立样本 t 检验比较 ACL 损伤组与对照组、男性与女性之间的 Notch 体积差异。
不同网络的髁间窝 DSC 均大于 0.90,Res-UNet 的性能最佳。ACL 损伤组的 Notch 体积明显低于对照组(6.12±1.34cm 比 6.95±1.75cm,P<0.001)。女性的 Notch 体积低于男性(5.41±1.30cm 比 6.76±1.51cm,P<0.001)。无论 ACL 是否损伤,男性和女性 ACL 损伤患者的 Notch 体积均小于 ACL 完整患者(p<0.001 和 p<0.005)。无论 ACL 是否损伤,男性的 Notch 体积均大于女性(p<0.001)。
使用深度神经网络自动分割髁间窝为临床预测和预防 ACL 损伤以及术后再损伤提供了技术支持。