Taha Zaid, Arulanandam Rozanne, Maznyi Glib, Godbout Elena, Carter-Timofte Madalina E, Kurmasheva Naziia, Reinert Line S, Chen Andrew, Crupi Mathieu J F, Boulton Stephen, Laroche Geneviève, Phan Alexandra, Rezaei Reza, Alluqmani Nouf, Jirovec Anna, Acal Alexandra, Fekete Emily E F, Singaravelu Ragunath, Petryk Julia, Idorn Manja, Potts Kyle G, Todesco Hayley, John Cini, Mahoney Douglas J, Ilkow Carolina S, Giguère Patrick, Alain Tommy, Côté Marceline, Paludan Søren R, Olagnier David, Bell John C, Azad Taha, Diallo Jean-Simon
Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.
Mol Ther. 2022 Sep 7;30(9):2998-3016. doi: 10.1016/j.ymthe.2022.04.025. Epub 2022 May 6.
We established a split nanoluciferase complementation assay to rapidly screen for inhibitors that interfere with binding of the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein with its target receptor, angiotensin-converting enzyme 2 (ACE2). After a screen of 1,200 US Food and Drug Administration (FDA)-approved compounds, we identified bifonazole, an imidazole-based antifungal agent, as a competitive inhibitor of RBD-ACE2 binding. Mechanistically, bifonazole binds ACE2 around residue K353, which prevents association with the RBD, affecting entry and replication of spike-pseudotyped viruses as well as native SARS-CoV-2 and its variants of concern (VOCs). Intranasal administration of bifonazole reduces lethality in K18-hACE2 mice challenged with vesicular stomatitis virus (VSV)-spike by 40%, with a similar benefit after live SARS-CoV-2 challenge. Our screen identified an antiviral agent that is effective against SARS-CoV-2 and VOCs such as Omicron that employ the same receptor to infect cells and therefore has high potential to be repurposed to control, treat, or prevent coronavirus disease 2019 (COVID-19).
我们建立了一种分裂纳米荧光素酶互补检测方法,以快速筛选干扰严重急性呼吸综合征冠状病毒2(SARS-CoV-2)刺突糖蛋白的受体结合域(RBD)与其靶受体血管紧张素转换酶2(ACE2)结合的抑制剂。在对1200种美国食品药品监督管理局(FDA)批准的化合物进行筛选后,我们确定了一种基于咪唑的抗真菌剂联苯苄唑,它是RBD-ACE2结合的竞争性抑制剂。从机制上讲,联苯苄唑在K353残基附近与ACE2结合,从而阻止其与RBD结合,影响刺突假型病毒以及天然SARS-CoV-2及其关注变体(VOCs)的进入和复制。鼻内给予联苯苄唑可使感染水疱性口炎病毒(VSV)-刺突的K18-hACE2小鼠的致死率降低40%,在感染活的SARS-CoV-2后也有类似效果。我们的筛选确定了一种抗病毒药物,它对SARS-CoV-2和诸如奥密克戎等使用相同受体感染细胞的VOCs有效,因此具有很高的重新用于控制、治疗或预防2019冠状病毒病(COVID-19)的潜力。