Liu Yunqing, Wang Xuefeng, Zhu Yuanna, Wang Haiqing, Yu Jinghua, Liu Hong, Ge Shenguang
Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, China.
School of Material Science and Engineering, University of Jinan, Jinan 250022, China.
J Colloid Interface Sci. 2022 Sep 15;622:443-451. doi: 10.1016/j.jcis.2022.04.129. Epub 2022 Apr 29.
Engineering of robust nonprecious electrocatalysts toward anodic oxygen evolution reaction (OER) is of great significance for lowering the cost and energy consumption for renewable fuel production. Herein, we report NiFeMoO nanosheets as high-performance OER electrocatalyst through promoting the thermodynamic-limiting oxidation cycle process in NiFe oxyhydroxide via high-valence Mo doping. The NiFeMoO nanosheets are prepared by an elaborate in-situ solvothermal etching-depositing process with NiFe alloy framework as substrate and metal precursors. The resultant nanosheets exhibit outstanding alkaline OER activity, requires only 235/282/327 mV overpotentials to achieve current density of 10/100/300 mA cm, respectively, with a good long-term stability at 20 mA cm for 72 h. Besides, the Tafel slope low to 28.1 mV dec indicates a favorable OER kinetics. The superior catalytic activity of NiFeMoO nanosheets should be attributed to the lower oxidation states of Ni and Fe induced by high-valence dopant, leading to easier surface reconstruction at low charge oxidation cycling during OER, thereby effectively reducing the overpotential. The synergy between the electronic effect among multimetallic sites and the unique morphology is expected to inspire the development of robust OER electrocatalyst for industrial application.
设计用于阳极析氧反应(OER)的坚固非贵金属电催化剂对于降低可再生燃料生产的成本和能耗具有重要意义。在此,我们报道了通过高价Mo掺杂促进氢氧化镍铁中的热力学限制氧化循环过程,将NiFeMoO纳米片作为高性能OER电催化剂。NiFeMoO纳米片通过以NiFe合金骨架为基底和金属前驱体的精细原位溶剂热蚀刻-沉积工艺制备。所得纳米片表现出出色的碱性OER活性,分别仅需235/282/327 mV的过电位即可实现10/100/300 mA cm的电流密度,在20 mA cm下具有良好的长期稳定性,可持续72小时。此外,Tafel斜率低至28.1 mV dec表明具有良好的OER动力学。NiFeMoO纳米片优异的催化活性应归因于高价掺杂剂诱导的Ni和Fe的较低氧化态,导致在OER期间低电荷氧化循环时表面更容易重构,从而有效降低过电位。多金属位点之间的电子效应与独特形态之间的协同作用有望推动用于工业应用的坚固OER电催化剂的开发。