Department of Mechanical Engineering, University of Washington, Seattle, WA, USA.
Allen Institute for Neural Dynamics, Seattle, WA, USA.
Nat Methods. 2022 May;19(5):613-619. doi: 10.1038/s41592-022-01468-5. Epub 2022 May 11.
Light-sheet microscopy has emerged as the preferred means for high-throughput volumetric imaging of cleared tissues. However, there is a need for a flexible system that can address imaging applications with varied requirements in terms of resolution, sample size, tissue-clearing protocol, and transparent sample-holder material. Here, we present a 'hybrid' system that combines a unique non-orthogonal dual-objective and conventional (orthogonal) open-top light-sheet (OTLS) architecture for versatile multi-scale volumetric imaging. We demonstrate efficient screening and targeted sub-micrometer imaging of sparse axons within an intact, cleared mouse brain. The same system enables high-throughput automated imaging of multiple specimens, as spotlighted by a quantitative multi-scale analysis of brain metastases. Compared with existing academic and commercial light-sheet microscopy systems, our hybrid OTLS system provides a unique combination of versatility and performance necessary to satisfy the diverse requirements of a growing number of cleared-tissue imaging applications.
光片显微镜已成为高通量清除组织体层成像的首选方法。然而,需要有一种灵活的系统,可以满足在分辨率、样品大小、组织清除方案和透明样品载体材料方面具有不同要求的成像应用。在这里,我们提出了一种“混合”系统,该系统结合了独特的非正交双目标和传统(正交)开放式光片(OTLS)架构,可用于多功能多尺度体积成像。我们展示了在完整的、已清除的小鼠大脑内高效筛选和靶向亚微米稀疏轴突的能力。通过对脑转移瘤的定量多尺度分析,该系统还能够实现多个样本的高通量自动化成像。与现有的学术和商业光片显微镜系统相比,我们的混合 OTLS 系统提供了一种独特的多功能性和性能组合,可满足越来越多的清除组织成像应用的多样化需求。