Suppr超能文献

卡宾介导的光亲和标记在药物化学中的当前进展。

Current advances of carbene-mediated photoaffinity labeling in medicinal chemistry.

作者信息

Ge Sha-Sha, Chen Biao, Wu Yuan-Yuan, Long Qing-Su, Zhao Yong-Liang, Wang Pei-Yi, Yang Song

机构信息

State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guiyang 550025 China

College of Pharmacy, East China University of Science & Technology Shanghai 200237 China.

出版信息

RSC Adv. 2018 Aug 20;8(51):29428-29454. doi: 10.1039/c8ra03538e. eCollection 2018 Aug 14.

Abstract

Photoaffinity labeling (PAL) in combination with a chemical probe to covalently bind its target upon UV irradiation has demonstrated considerable promise in drug discovery for identifying new drug targets and binding sites. In particular, carbene-mediated photoaffinity labeling (cmPAL) has been widely used in drug target identification owing to its excellent photolabeling efficiency, minimal steric interference and longer excitation wavelength. Specifically, diazirines, which are among the precursors of carbenes and have higher carbene yields and greater chemical stability than diazo compounds, have proved to be valuable photolabile reagents in a diverse range of biological systems. This review highlights current advances of cmPAL in medicinal chemistry, with a focus on structures and applications for identifying small molecule-protein and macromolecule-protein interactions and ligand-gated ion channels, coupled with advances in the discovery of targets and inhibitors using carbene precursor-based biological probes developed in recent decades.

摘要

光亲和标记(PAL)与化学探针相结合,可在紫外线照射下与目标共价结合,这在药物发现中已展现出相当大的潜力,可用于识别新的药物靶点和结合位点。特别是,卡宾介导的光亲和标记(cmPAL)因其出色的光标记效率、最小的空间位阻干扰和更长的激发波长,已被广泛应用于药物靶点识别。具体而言,重氮丙啶作为卡宾的前体之一,与重氮化合物相比具有更高的卡宾产率和更强的化学稳定性,已被证明是多种生物系统中有价值的光不稳定试剂。本综述重点介绍了cmPAL在药物化学领域的当前进展,着重阐述其在识别小分子-蛋白质和大分子-蛋白质相互作用以及配体门控离子通道方面的结构和应用,同时介绍了近几十年来利用基于卡宾前体的生物探针在靶点和抑制剂发现方面取得的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4842/9084484/2cc4177651e9/c8ra03538e-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验