Suppr超能文献

CRISPR/Cas9介导的矮牵牛基因编辑通过加速乙烯生成和衰老相关基因表达降低花朵寿命、种子产量和磷素再转运。

CRISPR/Cas9-Mediated Editing of in Petunia Decreases Flower Longevity, Seed Yield, and Phosphorus Remobilization by Accelerating Ethylene Production and Senescence-Related Gene Expression.

作者信息

Lin Yiyun, Jones Michelle L

机构信息

Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH, United States.

出版信息

Front Plant Sci. 2022 Apr 26;13:840218. doi: 10.3389/fpls.2022.840218. eCollection 2022.

Abstract

Developmental petal senescence is a type of programmed cell death (PCD), during which the production of ethylene is induced, the expression of PCD-related genes is upregulated, and nutrients are recycled. Autophagy is an intracellular mechanism involved in PCD modulation and nutrient cycling. As a central component of the autophagy pathway, () was previously shown as a negative regulator of petal senescence. To better understand the role of autophagy in ethylene biosynthesis and nutrient remobilization during petal senescence, we generated and characterized the knockout (KO) mutants of using CRISPR/Cas9 in × 'Mitchell Diploid.' KO lines exhibited decreased flower longevity when compared to the flowers of the wild-type or a non-mutated regenerative line (controls), confirming the negative regulatory role of in petal senescence. Smaller capsules and fewer seeds per capsule were produced in the KO plants, indicating the crucial function of autophagy in seed production. Ethylene production and ethylene biosynthesis genes were upregulated earlier in the KO lines than the controls, indicating that autophagy affects flower longevity through ethylene. The transcript levels of petal PCD-related genes, including , , (), and a metacaspase gene , were upregulated earlier in the corollas of KO lines, which supported the accelerated PCD in the KO plants. The remobilization of phosphorus was reduced in the KO lines, showing that nutrient recycling was compromised. Our study demonstrated the important role of autophagy in flower lifespan and seed production and supported the interactions between autophagy and various regulatory factors during developmental petal senescence.

摘要

发育性花瓣衰老属于一种程序性细胞死亡(PCD),在此过程中乙烯的生成被诱导,PCD相关基因的表达上调,并且营养物质得以循环利用。自噬是一种参与PCD调控和营养物质循环的细胞内机制。作为自噬途径的核心组成部分,()先前被证明是花瓣衰老的负调控因子。为了更好地理解自噬在花瓣衰老过程中乙烯生物合成和营养物质转运中的作用,我们利用CRISPR/Cas9在ב米切尔二倍体’中构建并鉴定了()的敲除(KO)突变体。与野生型或未突变的再生系(对照)花朵相比,KO系花朵的寿命缩短,证实了()在花瓣衰老中的负调控作用。KO植株产生的蒴果较小且每个蒴果中的种子较少,表明自噬在种子生产中具有关键作用。KO系中乙烯的生成和乙烯生物合成基因的上调比对照更早,表明自噬通过乙烯影响花朵寿命。花瓣PCD相关基因的转录水平,包括()、()、()和一个metacaspase基因(),在KO系花冠中的上调比对照更早,这支持了KO植株中PCD的加速。KO系中磷的转运减少,表明营养物质循环受到损害。我们的研究证明了自噬在花朵寿命和种子生产中的重要作用,并支持了发育性花瓣衰老过程中自噬与各种调控因子之间的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5aa2/9088004/99f0b1a17e9b/fpls-13-840218-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验