Liu Shuping, Serrano Diana, Fossati Alexandre, Tallaire Alexandre, Ferrier Alban, Goldner Philippe
Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris F-75005 Paris France
Sorbonne Université, Faculté des Sciences et Ingénierie UFR 933 F-75005 Paris France.
RSC Adv. 2018 Nov 5;8(65):37098-37104. doi: 10.1039/c8ra07246a. eCollection 2018 Nov 1.
Rare earth doped nanoparticles with sub-wavelength size can be coupled to optical micro- or nano-cavities to enable efficient single ion readout and control, a key requirement for quantum processors and high-fidelity single-ion quantum memories. However, producing small nanoparticles with good dispersion and exploitable optical coherence properties, another key aspect for these applications, is highly challenging by most synthesis and nano-fabrication methods. We report here on the wet chemical etching of Eu:YO nanoparticles and demonstrate that a controlled size reduction down to 150 nm, well below the wavelength of interest, 580 nm, can be achieved. The etching mechanism is found to proceed by reaction with grain boundaries and isolated grains, based on obtained particles size, morphology and polycrystalline structure. Furthermore, this method allows maintaining long optical coherence lifetimes ( ): the 12.5 μs and 9.3 μs values obtained for 430 nm initial particles and 150 nm etched particles respectively, revealing a broadening of only 10 kHz after etching. These values are the longest values reported for any nanoparticles, opening the way to new rare-earth based nanoscale quantum technologies.
具有亚波长尺寸的稀土掺杂纳米颗粒可与光学微腔或纳米腔耦合,以实现高效的单离子读出和控制,这是量子处理器和高保真单离子量子存储器的一项关键要求。然而,通过大多数合成和纳米制造方法来制备具有良好分散性和可利用光学相干特性的小纳米颗粒(这些应用的另一个关键方面)极具挑战性。我们在此报告了对铕掺杂钇铝石榴石(Eu:YAG)纳米颗粒的湿化学蚀刻,并证明可以实现可控的尺寸减小至150纳米,远低于感兴趣的波长580纳米。基于所获得的颗粒尺寸、形态和多晶结构,发现蚀刻机制是通过与晶界和孤立晶粒反应进行的。此外,该方法能够保持较长的光学相干寿命( ):对于初始尺寸为430纳米的颗粒和蚀刻后尺寸为150纳米的颗粒,分别获得了12.5微秒和9.3微秒的值,表明蚀刻后线宽仅加宽了10千赫兹。这些值是报道的所有纳米颗粒中最长的 值,为基于稀土的新型纳米级量子技术开辟了道路。